Skip to main content
Log in

Approximation of the Mobility of Atomic Ions of Noble Gases in Their Parent Gas

  • PLASMA INVESTIGATIONS
  • Published:
High Temperature Aims and scope

Abstract

The mobility of ions plays an important role in the theoretical analysis of many phenomena in low-temperature plasmas, such as ambipolar diffusion, the formation of electrode and surface sheaths in gas discharges, particle charging and the ion drag force in dusty plasmas. A modification of the semiempirical Frost formula for the mobility of positive atomic ions in their parent gases is proposed. The modified expression demonstrates excellent agreement with experimental results for various ionized rare gases in a very wide range of electric field strengths and temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Radtsig, A.A. and Smirnov, B.M., in Khimiya plazmy. Sbornik nauchnykh statei (Chemistry of Plasma: Collection of Scientific Papers), Moscow: Energoatomizdat, 1984, no. 11, p. 170.

  2. Salym, Ya.I., in Khimiya plazmy. Sbornik nauchnykh statei (Chemistry of Plasma: Collection of Scientific Papers), Moscow: Energoatomizdat, 1993, no. 17, p. 194.

  3. Frost, L.S., Phys. Rev., 1957, vol. 105, p. 354.

    Article  ADS  Google Scholar 

  4. Raizer, Y.P., Gas Discharge Physics, Berlin: Springer, 2011.

    Google Scholar 

  5. Riemann, K.U., J. Phys. D: Appl. Phys., 1991, vol. 24, p. 493.

    Article  ADS  Google Scholar 

  6. Riemann, K.U., J. Phys. D: Appl. Phys., 1992, vol. 25, p. 1432.

    Article  ADS  Google Scholar 

  7. Phelps, A.V., J. Appl. Phys., 1994, vol. 76, p. 747.

    Article  ADS  Google Scholar 

  8. Barnes, M.S., Keller, J.H., Forster, J.C., O’Neill, J.A., and Coultas, D.K., Phys. Rev. Lett., 1992, vol. 68, p. 313.

    Article  ADS  Google Scholar 

  9. Khrapak, S.A., Ivlev, A.V., Morfill, G.E., and Thomas, H.M., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2002, vol. 66, 046414.

    Article  ADS  Google Scholar 

  10. Khrapak, S.A., Ivlev, A.V., Zhdanov, S.K., and Morfill, G.E., Phys. Plasmas, 2005, vol. 12, 042308.

    Article  ADS  Google Scholar 

  11. Fortov, V.E., Ivlev, A., Khrapak, S., Khrapak, A., and Morfill, G., Phys. Rep., 2005, vol. 421, p. 1.

    Article  ADS  MathSciNet  Google Scholar 

  12. Zobnin, A.V., Usachev, A.D., Petrov, O.F., and Fortov, V.E., Phys. Plasmas, 2008, vol. 15, 043705.

    Article  ADS  Google Scholar 

  13. Khrapak, S.A., Thoma, M.H., Chaudhuri, M., Morfill, G.E., Zobnin, A.V., Usachev, A.D., Petrov, O.F., and Fortov, V.E., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2013, vol. 87, 063109.

    Article  Google Scholar 

  14. Puttscher, M. and Melzer, A., Phys. Plasmas, 2014, vol. 21, 123704.

    Article  ADS  Google Scholar 

  15. Buryakov, I.A., Krylov, E.V., Makas’, A.L., Nazarov, E.G., Pervukhin, V.V., and Rasulev, U.Kh., Pis’ma Zh. Tekh. Fiz., 1991, vol. 17, no. 12, p. 60.

    Google Scholar 

  16. Buryakov, I.A., Tech. Phys., 2002, vol. 72, no. 11, p. 109.

    Google Scholar 

  17. Buryakov, I.A., Tech. Phys., 2004, vol. 74, no. 8, p. 15.

    Google Scholar 

  18. Buryakov, I.A., Zh. Anal. Khim., 2018, vol. 73, no. 12, p. 941.

    Google Scholar 

  19. Hornbeck, J.A., Phys. Rev., 1951, vol. 84, p. 615.

    Article  ADS  Google Scholar 

  20. Biondi, M.A. and Chanin, L.M., Phys. Rev., 1954, vol. 94, p. 910.

    Article  ADS  Google Scholar 

  21. Ellis, H., Pai, R., McDaniel, E., Mason, E., and Viehland, L., At. Data Nucl. Data Tables, 1976, vol. 17, p. 177.

    Article  ADS  Google Scholar 

  22. Basurto, E., de Urquijo, J., Alvarez, I., and Cisneros, C., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2000, vol. 61, p. 3053.

    Article  Google Scholar 

  23. Wannier, G.H., Bell Syst. Tech. J., 1953, vol. 32, p. 170.

    Article  Google Scholar 

  24. Fahr, H. and Müller, K.G., Z. Phys., 1967, vol. 200, p. 343.

    Article  ADS  Google Scholar 

  25. Patterson, P.L., Phys. Rev. A: At., Mol.,Opt. Phys., 1970, vol. 2, p. 1154.

    Google Scholar 

  26. Hahn, H.-S. and Mason, E.A., Phys. Rev. A: At., Mol.,Opt. Phys., 1972, vol. 6, p. 1573.

    Google Scholar 

  27. Lampe, M., Rocker, T.B., Joyce, G., Zhdanov, S.K., Ivlev, A.V., and Morfill, G.E., Phys. Plasmas, 2012, vol. 19, 113703.

    Article  ADS  Google Scholar 

  28. Antipov, S.N., Asinovskii, E.I., Kirillin, A.V., Maiorov, S.A., Markovets, V.V., Petrov, O.F., and Fortov, V.E., J. Exp. Theor. Phys., 2008, vol. 106, p. 830.

    Article  ADS  Google Scholar 

  29. Viehland, L.A. and Mason, E.A., At. Data Nucl. Data Tables, 1995, vol. 60, p. 37.

    Article  ADS  Google Scholar 

  30. Killian, T.C., Science, 2007, vol. 316, p. 705.

    Article  ADS  Google Scholar 

  31. Smirnov, B.M., Theory of Gas Discharge Plasma, New York: Springer, 2015.

    Book  Google Scholar 

  32. Robertson, S. and Sternovsky, Z., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2003, vol. 67, 046405.

    Article  ADS  Google Scholar 

  33. Khrapak, S., Huber, P., Thomas, H., Naumkin, V., Molotkov, V., and Lipaev, A., Phys. Rev. E, 2019, vol. 99, 053210.

    Article  ADS  Google Scholar 

  34. Khrapak, S.A. and Khrapak, A.G., AIP Adv., 2019, vol. 9, 095008.

    Article  ADS  Google Scholar 

  35. Pustylnik, M.Y., Fink, M.A., Nosenko, V., et al., Rev. Sci. Instrum., 2016, vol. 87, 093505.

    Article  ADS  Google Scholar 

  36. Antonova, T., Khrapak, S.A., Pustylnik, M.Y., et al., Phys. Plasmas, 2019, vol. 26, 113703.

    Article  ADS  Google Scholar 

  37. Khrapak, S.A., J. Plasma Phys., 2013, vol. 79, p. 1123.

    Article  ADS  Google Scholar 

  38. Golyatina, R.I. and Maiorov, S.A., Kratk. Soobshch. Fiz., 2015, vol. 42, no. 10, p. 21.

  39. Golyatina, R.I. and Maiorov, S.A., Plasma Reports, 2017, vol. 43, no. 1, p. 75.

  40. Maiorov, S.A., Golyatina, R.I., Kodanova, S.K., and Ramazanov, T.S., Inzh. Fiz., 2019, no. 10, p. 22.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. G. Khrapak or S. A. Maiorov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khrapak, A.G., Golyatina, R.I., Maiorov, S.A. et al. Approximation of the Mobility of Atomic Ions of Noble Gases in Their Parent Gas. High Temp 58, 545–549 (2020). https://doi.org/10.1134/S0018151X20040069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X20040069

Navigation