Skip to main content
Log in

Low-Temperature Plasma Generator with Direct Arc for Plasma Remelting

  • PLASMA INVESTIGATIONS
  • Published:
High Temperature Aims and scope

Abstract

An efficient low-temperature plasma generator with direct arc for plasma remelting was developed and studied with direct and reverse polarity. It has an expanding nozzle channel and the remelted metal acts as a second electrode. An efficiency of ≈90% and a long service life with a current strength of up to 200 A were obtained. It is shown that the nozzle increases arc stability at an opening angle of 12°. It is established that a super-equilibrium nitrogen content (up to 0.22%) in the molten metal can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Krasnov, A.N., Sharivker, S.Yu., and Zil’berberg, V.G., Nizkotemperaturnaya plazma v metallurgii (Low-Temperature Plasma in Metallurgy), Moscow: Metallurgiya, 1970.

  2. Lakomskii, V.I., Plazmenno-dugovoi pereplav (Plasma-Arc Remelting), Kiev: Tekhnika, 1974.

  3. Isakaev, E.Kh., Sinel’nikov, V.A., and Filippov, G.A., Chern. Metall., Byull. Nauchno-Tekh. Ekon. Inf., 2005, no. 7, p. 59.

  4. Paisov, I.V., Termicheskaya obrabotka stali i chuguna. Uchebnoe posobie (Heat Treatment of Steel and Cast Iron: A Textbook), Moscow: Metallurgiya, 1970.

  5. Averin, V.V., Revyakin, A.V., Fedorchenko, V.I., et al., Azot v metallakh (Nitrogen in Metals), Moscow: Metallurgiya, 1976.

  6. Morozov, A.N., Vodorod i azot v stali (Hydrogen and Nitrogen in Steel), Moscow: Metallurgiya, 1968.

  7. Shlyamnev, A.P., Uglov, V.A., Filippov, G.A., et al., Chern. Metall., Byull. Nauchno-Tekh. Ekon. Inf., 2013, no. 2, p. 12.

  8. Shpaidel’, M.O., Metalloved. Term. Obrab. Met., 2005, no. 11, p. 9.

  9. Muradyan, S.O., Cand. Sci. (Eng.) Dissertation, Moscow: Inst. Math. Model., Russ. Acad. Sci., 2016.

  10. Hänninen, H.E., Application and performance of high nitrogen steels, in Proc. Int. Conf. on High Nitrogen Steels, HNS’2004, Ostend, 2004, p. 371.

  11. Stein, G. and Diehl, V., High nitrogen alloyed steels on the move-fields of application, in Proc. Int. Conf. on High Nitrogen Steels, HNS’2004, Ostend, 2004, p. 421.

  12. Kostina, M.V., Bannykh, O.A., and Blinov, V.M., Metalloved. Term. Obrab. Met., 2000, no. 12, p. 3.

  13. Slovetskii, D.I., Modelirovanie i metody rascheta fiziko-khimicheskikh protsessov v nizkotemperaturnoi plazme (Simulation and Calculation of Physicochemical Processes in Low-Temperature Plasma), Moscow: Nauka, 1974.

  14. Rykalin, N.N., Uglov, A.A., and Anishchenko, L.M., Vysokotemperaturnye tekhnologicheskie protsessy. Teplofizicheskie osnovy (High-Temperature Processes: Thermophysical Basics), Moscow: Nauka, 1986.

  15. Houdremont, E., Handbuch der Sonderstahlkunde, Berlin: Springer, 1956.

    Book  Google Scholar 

  16. Gol’dshtein, M.I., Grachev, C.B., and Veksler, Yu.G., Spetsial’nye stali (Special Steels), Moscow: Mosk. Inst. Stali Splavov, 1999, 2nd ed.

  17. Rashev, Ts., High Nitrogen Steels, Metallurgy under High Pressure, Sofia: Bulgar. Acad. Sci., 1995.

    Google Scholar 

  18. Holzgruber, W., New ESR technology for new and improved products, in Proc. 7th Int. Conf. on Vacuum Metallurgy, Tokyo, 1982, vol. 2, p. 1452.

  19. Farnasov, G.A., Fridman, A.G., and Karinskii, V.N., Plazmennaya plavka (Plasma Melting), Moscow: Metallurgiya, 1968.

  20. Il’ichev, M.V., Tyuftyaev, A.S., Livanova, O.V., and Filippov, G.A., Metallurgist, 2008, vol. 52, p. 561.

    Article  Google Scholar 

  21. Tyuftyaev, A.S., Gadzhiev, M.Kh., Il’ichev, M.V., Khromov, M.A., and Filippov, G.A., Metallurgist, 2019, vol. 63, p. 156.

    Article  Google Scholar 

  22. Koroteev, A.S., Mironov, V.M., and Svirchuk, Yu.S., Plazmotrony: konstruktsii, kharakteristiki, raschet (Plasmatrons: Designs, Characteristics, Calculation), Moscow: Mashinostroenie, 1993.

  23. Glebov, I.A. and Rutberg, F.G., Moshchnye generatory plazmy (Powerful Plasma Generators), Moscow: Energoatomizdat, 1985.

  24. Zhukov, M.F., Eksperimental’nye issledovaniya plazmotronov (Experimental Studies of Plasmatrons), Novosibirsk: Nauka, 1977.

  25. Zhukov, M.F., Zasypkin, I.M., Timoshevskii, A.N., et al., Elektrodugovye generatory termicheskoi plazmy (Thermal Plasma Arc Generators), Novosibirsk: Nauka, 1999.

  26. Asinovskii, E.I., Kirillin, A.V., and Nizovskii, V.L., Stabilizirovannye elektricheskie dugi i ikh primenenie v teplofizicheskom eksperimente (Stabilized Electric Arcs and Their Application in a Thermophysical Experiment), Moscow: Fizmatlit, 2008, 2nd ed.

  27. Klimenko, G.K. and Lyapin, A.A., Konstruktsii elektrodugovykh plazmotronov (Designs of Electric Arc Plasmatrons), Moscow: Mosk. Gos. Tekh. Univ. im. N.E. Baumana, 2011.

  28. Cherednichenko, V.S., An’shakov, A.S., and Kuz’min, M.G., Plazmennye elektrotekhnologicheskie ustanovki (Plasma Electrotechnological Installations), Novosibirsk: Novosibirsk. Gos. Tekh. Univ., 2008.

  29. Shapovalov, V.A. and Latash, Yu.V., Probl. Spets. Elektrometall., 1999, no. 4, p. 50.

  30. Shapovalov, V.A., Tsykulenko, K.A., Sheiko, I.V., and Kolesnichenko, V.I., Sovrem. Elektrometall., 2010, no. 4, p. 20.

  31. Rutberg, F.G., Kuznetsov, V.A., Serba, E.O., Nakonechnyi, G.V., Nikonov, A.V., Popov, S.D., and Surov A.V., High Temp., 2013, vol. 51, no. 5, p. 608.

    Article  Google Scholar 

  32. Gadzhiev, M.Kh., Isakaev, E.Kh., Tyuftyaev, A.S., and Yusupov, D.I., Tech. Phys. Lett., 2016, vol. 42, no. 1, p. 79.

    Article  ADS  Google Scholar 

  33. Dautov, G.Yu., Kashapov, N.F., Dautov, I.G., and Sofronitskiy, A.O., J. Phys.: Conf. Ser., 2018, vol. 1058, 012035.

    Google Scholar 

  34. Gadzhiev, M.Kh., Kulikov, Yu.M., Son, E.E., Tyuftyaev, A.S., Sargsyan, M.A., and Yusupov, D.I., High Temp., 2020, vol. 58, no. 1, p. 12.

    Article  Google Scholar 

  35. Isakaev, E.Kh., Sinkevich, O.A., Tyuftyaev, A.S., and Chinnov, V.F., High Temp., 2010, vol. 48, no. 1, p. 97.

    Article  Google Scholar 

  36. Isakaev, E.Kh., Tyuftyaev, A.S., and Gadzhiev, M.Kh., Inorg. Chem.: Appl. Res., 2017, vol. 8, p. 396.

    Google Scholar 

  37. Ochkin, V.N., Spektroskopiya nizkotemperaturnoi plazmy (Low-Temperature Plasma Spectroscopy), Moscow: Fizmatlit, 2006.

  38. Biberman, L.M., Vorob’ev, V.S., and Yakubov, I.T., Kinetika neravnovesnoi nizkotemperaturnoi plazmy (Kinetics of Nonequilibrium Low-Temperature Plasma), Moscow: Nauka, 1982.

  39. Sargsyan, M.A., Tereshonok, D.V., Valyano, G.E., Scherbakov, V.V., Konovalov, P.A., and Gadzhiev, M.Kh., Phys. Plasmas, 2020, vol. 27, 023506.

    Article  ADS  Google Scholar 

  40. Chinnov, V.F., Izluchatel’nye svoistva i spektroskopiya nizkotemperaturnoi plazmy (Emissive Properties and Spectroscopy of Low-Temperature Plasma), Moscow: Mosk. Energ. Inst., 2012.

  41. Plasma Diagnostics, Lochte-Holtgreven, W., Ed., Amsterdam: North Holland, 1968.

Download references

Funding

The study was supported in part by the Russian Foundation for Basic Research, project nos. 19-08-0100a, 20-08-00224a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kh. Gadzhiev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadzhiev, M.K., Ilyichev, M.V., Tyuftyaev, A.S. et al. Low-Temperature Plasma Generator with Direct Arc for Plasma Remelting. High Temp 58, 539–544 (2020). https://doi.org/10.1134/S0018151X20040033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X20040033

Navigation