Skip to main content
Log in

On Nanosecond Thermophysics (Review)

  • THERMOPHYSICAL PROPERTIES OF MATERIALS
  • Published:
High Temperature Aims and scope

Abstract

A review of highly nonequilibrium states generated in solids and liquids by a short shock-wave action is presented. States with large deviator stress components, large negative pressures, overheating of the solid phase, supercooling of the liquid phase, and issues of viscosity of liquids (including metal melts) and solids at strain rates up to 108 s–1 and high pressures are considered. The dynamic tensile strength (cavitational strength) of metal melts, fast polymorphic transformations, and a new rule for selecting the detonation velocity of explosives are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. Al’tshuler, L.V., Sov. Phys. Usp., 1965, vol. 8, no. 1, p. 52.

    Article  ADS  Google Scholar 

  2. Zel’dovich Ya.B. and Yu.P. Raizer. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. New York: Academic Press, 1967.

    Google Scholar 

  3. Al’tshuler, L.V., Trunin, R.F., Urlin, V.D., Fortov, V.E., and Funtikov, A.I., Phys.—Usp., 1999, vol. 42, no. 3, p. 261.

    Article  ADS  Google Scholar 

  4. Nellis, W.J., Ultracondensed Matter by Dynamic Compression, Cambridge: Cambridge Univ. Press, 2017.

    Book  Google Scholar 

  5. Remington, B.A., Allen, P., Bringa, E.M., Hawreliak, J., Ho, D., Lorenz, K.T., Lorenzana, H., McNaney, J.M., Meyers, M.A., Pollaine, S.W., Rosolankova, K., Sadik, B., Schneider, M.S., Swift, D., Wark, J., and Yaakobi, B., Mater. Sci. Technol., 2006, vol. 22, no. 4, p. 474.

    Article  Google Scholar 

  6. Kanel’, G.I., Fortov, V.E., and Razorenov, S.V., Phys.—Usp., 2007, vol. 50, no. 8, p. 771.

    Article  ADS  Google Scholar 

  7. Kanel’, G.I., Zaretsky, E.B., Razorenov, S.V., Ashitkov, S.I., and Fortov, V.E., Phys.—Usp., 2017, vol. 60, no. 5, p. 490.

    Article  ADS  Google Scholar 

  8. Fortov, V.E., Moshchnye udarnye volny na Zemle i v kosmose (Powerful Shock Waves on Earth and in Space), Moscow: Fizmatlit, 2018.

  9. Kanel, G.I., Shock waves in solid state physics. Boca Raton, London, New York: CRC Press, Taylor an Francis Group, 2019

    Book  MATH  Google Scholar 

  10. Baumung, K., Bluhm, H.J., Goel, B., Hoppe, P., Karow, H.U., Rush, D., Fortov, V.E., Kanel, G.I., Razorenov, S.V., Utkin, A.V., and Vorobjev, O.Yu., Laser Part. Beams, 1996, vol. 14, no. 2, p. 181.

    Article  ADS  Google Scholar 

  11. Anisimov, S.I., Zhakhovsky, V.V., Inogamov, N.A., Migdal, K.P., Petrov, Yu.V., Khokhlov, V.A., J. Exp. Teor. Phys., 2019, vol. 129, no. 4, p. 757.

    Article  ADS  Google Scholar 

  12. Inogamov, N.A., Khokhlov, V.F., Petrov, Yu.V., and Zhahovsky, V.V., Opt. Quantum Electron., 2020, vol. 52, p. 63.

    Article  Google Scholar 

  13. Fortov, V.E., Lectures on the Physics of Extreme States of Matter, Bristol, UK: IOP, 2019.

    Book  Google Scholar 

  14. Moore, D.S., J. Opt. Soc. Am. B, 2018, vol. 35, no. 10.

  15. Kanel, G.I. and Savinykh, A.S., Dokl. Phys., 2020, vol. 65, no. 1, p. 12.

    Article  ADS  Google Scholar 

  16. Al’shitz, V.I. and Indenbom, V.L., Sov. Phys. Usp., 1975, vol. 18, no. 1, p. 1.

    Article  ADS  Google Scholar 

  17. Kanel, G.I., Baumung, K., Singer, J., and Razorenov, S.V., Appl. Phys. Lett., 2000, vol. 76, no. 22, p. 3230.

    Article  ADS  Google Scholar 

  18. Zaretsky, E.B. and Kanel, G.I., J. Appl. Phys., 2012, vol. 112, 073504.

    Article  ADS  Google Scholar 

  19. Ashitkov, S.I., Agranat, M.B., Kanel’, G.I., Komarov, P.S., and Fortov, V.E., JETP Lett., 2010, vol. 92, no. 8, p. 516.

    Article  ADS  Google Scholar 

  20. Kanel, G.I., AIP Conf. Proc., 2012, vol. 1426, p. 939.

    Article  ADS  Google Scholar 

  21. Vorob’ev, A.A., Dremin, A.N., and Kanel’, G.I., J. Appl. Mech. Tech. Phys., 1974, vol. 15, no. 5, p. 661.

    Article  ADS  Google Scholar 

  22. Landau, L.D. and Lifshits, E.M., Teoreticheskaya fizika (Theoretical Physics), vol. 6: Gidrodinamika (Hydrodynamics), Moscow: Nauka, 1986.

  23. Ashitkov, S.I., Komarov, P.S., Agranat, M.B., Kanel’, G.I., and Fortov, V.E., JETP Lett., 2013, vol. 98, no. 7, p. 384.

    Article  ADS  Google Scholar 

  24. Ashitkov, S.I., Komarov, P.S., Struleva, E.V., Agranat, M.B., and Kanel’, G.I., JETP Lett., 2015, vol. 101, no. 4, p. 276.

    Article  ADS  Google Scholar 

  25. Antoun, T., Seaman, L., Curran, D.R., Kanel, G.I., Razorenov, S.V., and Utkin, A.V., Spall Fracture, New York: Springer, 2003.

    Google Scholar 

  26. Kanel, G.I., Int. J. Fract., 2010, vol. 163, nos. 1–2, p. 173.

    Article  Google Scholar 

  27. Kanel, G.I., Savinykh, A.S., Garkushin, G.V., and Razorenov, S.V., J. Appl. Phys., 2020, vol. 127, 035901.

    Article  ADS  Google Scholar 

  28. Kanel, G.I., Savinykh, A.S., Garkushin, G.V., and Razorenov, S.V., J. Appl. Phys., 2019, vol. 126, 075901.

    Article  ADS  Google Scholar 

  29. Meyers, M.A., Benson, D.J., Vohringer, O., Kad, B.K., Xue, Q., and Fu, H.-H., Mater. Sci. Eng., A, 2002, vol. 322, p. 194.

    Article  Google Scholar 

  30. Merzhievskii, L.A., Combust., Explos. Shock Waves (Engl. Transl.), 2015, vol. 51, no. 2, p. 269.

  31. Armstrong, R.W., Arnold, W., and Zerilli, F.J., Metall. Mater. Trans. A, 2007, vol. 38, p. 2605.

    Article  Google Scholar 

  32. Austin, R.A. and McDowell, D.L., Int. J. Plast., 2011, vol. 27, p. 1.

    Article  Google Scholar 

  33. Barton, N.R., Bernier, J.V., Becker, R., Arsenlis, A., Cavallo, R., Marian, J., Rhee, M., Park, H.-S., Remington, B.A., and Olson, R.T., J. Appl. Phys., 2011, vol. 109, 073501.

    Article  ADS  Google Scholar 

  34. Mayer, A.E., Khishchenko, K.V., Levashov, P.R., and Mayer, P.N., J. Appl. Phys., 2013, vol. 113, 193508.

    Article  ADS  Google Scholar 

  35. Meyers, M.A., Jarmakani, H., Bringa, E.M., and Remington, B.A., Dislocations in Shock Compression and Release, Dislocations in Solids, vol. 15, Hirth, J.P. and Kubin, L., Eds., Amsterdam: Elsevier, 2009.

    Google Scholar 

  36. Olmsted, D.L., Hecto, G., Curtin, W.A., and Clifton, R.J., Modell. Simul. Mater. Sci. Eng., 2005, vol. 13, p. 371.

    Article  ADS  Google Scholar 

  37. Kuksin, A.Yu. and Yanilkin, A.V., Mech. Solids, 2015, vol. 50, no. 1, p. 44.

    Article  ADS  Google Scholar 

  38. Pickard, W.F., Prog. Biophys. Mol. Biol., 1981, vol. 37, p. 181.

    Article  Google Scholar 

  39. Faizullin, M.Z. and Skripov, V.P., High Temp., 2007, vol. 45, no. 6, p. 621.

    Article  Google Scholar 

  40. Sin’ko, G.V. and Smirnov, N.A., JETP Lett., 2002, vol. 75, no. 4, p. 184.

    Article  ADS  Google Scholar 

  41. Pokluda, J. and Šandera, P., Evolution of ideal strength calculations, in Metal 2000, Ostrava: Tanger Ostrava, 2000 [CD-ROM].

    Google Scholar 

  42. Joshi, K.D. and Gupta, S.C., High Pressure Res., 2007, vol. 27, no. 2, p. 259.

    Article  ADS  Google Scholar 

  43. Černý, M. and Pokluda, J., Phys. Rev. B: Condens. Matter Mater. Phys., 2010, vol. 82, 174106.

    Article  ADS  Google Scholar 

  44. Baidakov, V.G. and Tipeev, A.O., High Temp., 2018, vol. 56, no. 2, p. 184.

    Article  Google Scholar 

  45. Balibar, S., J. Low Temp. Phys., 2002, vol. 129, nos. 5–6, p. 363.

    Article  ADS  Google Scholar 

  46. Kiselev, S.B., Phys. A(Amsterdam,Neth.), 1999, vol. 269, p. 252.

    Google Scholar 

  47. Balibar, S. and Caupin, F., J. Phys.: Condens. Matter, 2003, vol. 15, p. 75.

    ADS  Google Scholar 

  48. Ogata, S., Li Ju, Hirosaki, N., Shibutani, Y., and Yip, S., Phys. Rev. B: Condens. Matter Mater. Phys., 2004, vol. 70, 104104.

    Article  ADS  Google Scholar 

  49. Bukreeva, K.A., Iskandarov, A.M., Dmitriev, S.V., Umeno, Y., and Mulyukov, R.R., Phys. Solid State, 2014, vol. 56, no. 3, p. 423.

    Article  ADS  Google Scholar 

  50. Boness, D.A. and Brown, J.M., Phys. Rev. Lett., 1993, vol. 71, no. 18, p. 2931.

    Article  ADS  Google Scholar 

  51. Kormer, S.B., Sov. Phys. Usp., 1968, vol. 11, no. 2, p. 229.

    Article  ADS  Google Scholar 

  52. Asay, J.R. and Hayes, D.B., J. Appl. Phys., 1975, vol. 46, no. 11, p. 4789.

    Article  ADS  Google Scholar 

  53. Kanel, G.I. and Razorenov, S.V., Phys. Solid State, 2001, vol. 43, no. 5, p. 871.

    Article  ADS  Google Scholar 

  54. Dash, J.D., Rev. Mod. Phys., 1999, vol. 71, no. 5, p. 737.

    Article  ADS  Google Scholar 

  55. Besold, G. and Mouritsen, O.G., Phys. Rev. B: Condens. Matter Mater. Phys., 1994, vol. 50, no. 10, p. 6573.

    Article  ADS  Google Scholar 

  56. Kanel, G.I., Razorenov, S.V., Bogatch, A.A., Utkin, A.V., Fortov, V.E., and Grady, D.E., J. Appl. Phys., 1996, vol. 79, no. 11, p. 8310.

    Article  ADS  Google Scholar 

  57. Garkushin, G.V., Kanel, G.I., Savinykh, A.S., and Razorenov, S.V., Int. J. Fract., 2016, vol. 197, no. 2, p. 185.

    Article  Google Scholar 

  58. Fecht, H.J. and Johnson, W.L., Nature, 1988, vol. 334, no. 6177, p. 50.

    Article  ADS  Google Scholar 

  59. Tallon, J.L., Nature, 1989, vol. 342, no. 6250, p. 658.

    Article  ADS  Google Scholar 

  60. Skripov, V.P. and Faizullin, M.Z., Fazovye perekhody kristall-zhidkost’-par i termodinamicheskoe podobie (Crystal–Liquid–Vapor Phase Transitions and Thermodynamic Similarity), Moscow: Fizmatlit, 2003.

  61. Lu, K. and Li, Y., Phys. Rev. Lett., 1998, vol. 80, no. 20, p. 4474.

    Article  ADS  Google Scholar 

  62. Luo, S.-N., Ahrens, T.J., Cagin, T., Strachan, A., Goddard, W.A. III, and Swift, D., Phys. Rev. B: Condens. Matter Mater. Phys., 2003, vol. 68, 134206.

    Article  ADS  Google Scholar 

  63. Belonoshko, A.B., Skorodumova, N.V., Rosengren, A., and Johansson, B., Phys. Rev. B: Condens. Matter Mater. Phys., 2006, vol. 73, 012201.

    Article  ADS  Google Scholar 

  64. Iosilevskii, I.L. and Chigvintsev, A.Yu., Issledovano Ross., 2003, no. 3, p. 20.

  65. Kuksin, A.Yu., Norman, G.E., and Stegailov, V.V., High Temp., 2007, vol. 45, no. 1, p. 37.

    Article  Google Scholar 

  66. Funtikov, A.I., High Temp., 2011, vol. 49, no. 3, 439.

    Article  Google Scholar 

  67. Savinykh, A.S., Garkushin, G.V., Kanel’, G.I., and Razorenov, S.V., Chebyshev. Sb., 2017, vol. 18, no. 3, p. 461.

    Google Scholar 

  68. Myint, P.C., Chernov, A.A., Sadigh, B., Benedict, L.X., Hall, B.M., Hamel, S., and Belof, J.L., Phys. Rev. Lett., 2018, vol. 121, 155701.

    Article  ADS  Google Scholar 

  69. Swegle, J.W. and Grady, D.E., J. Appl. Phys., 1985, vol. 58, p. 692.

    Article  ADS  Google Scholar 

  70. Kanel, G.I., Razorenov, S.V., Garkushin, G.V., Pavlenko, A.V., and Malyugina, S.N., Phys. Solid State, 2016, vol. 58, no. 6, p. 1191.

    Article  ADS  Google Scholar 

  71. Kanel’, G.I., Savinykh, A.S., Garkushin, G.V., and Razorenov, S.V., High Temp., 2017, vol. 55, no. 3, p. 380.

    Article  Google Scholar 

  72. Dremin, A.N., Kuznetsov, D.I., Shunin, V.M., and Yakushev, V.V., Zh. Fiz. Khim., 1980, vol. 54, no. 1, p. 135.

    Google Scholar 

  73. Al’tshuler, L.V., Doronin, G.S., and Kim, G.X., J. Appl. Mech. Tech. Phys., 1986, vol. 27, no. 6, p. 887.

    Article  ADS  Google Scholar 

  74. Savinykh, A.S., Garkushin, G.V., Kanel’, G.I., and Razorenov, S.V., High Temp., 2018, vol. 56, no. 5, p. 685.

    Article  Google Scholar 

  75. Zaretsky, E.B. and Kanel, G.I., J. Appl. Phys., 2019, vol. 126, p. 085902.

    Article  ADS  Google Scholar 

  76. Richeton, J., Ahzi, S., Vecchio, K.S., Jiang, F.C., and Adharapurapu, R.R., Int. J. Solids Struct., 2006, vol. 43, p. 2318.

    Article  Google Scholar 

  77. Mulliken, A.D. and Boyce, M.C., Int. J. Solids Struct., 2006, vol. 43, p. 1331.

    Article  Google Scholar 

  78. Kanel, G.I., Savinykh, A.S., Garkushin, G.V., and Razorenov, S.V., JETP Lett., 2015, vol. 102, no. 8, p. 548.

    Article  ADS  Google Scholar 

  79. Zaretsky, E.B., J. Appl. Phys., 2016, vol. 120, 025902.

    Article  ADS  Google Scholar 

  80. Ashitkov, S.I., Komarov, P.S., Ovchinnikov, A.V., Struleva, E.V., and Agranat, M.B., JETP Lett., 2016, vol. 103, no. 8, p. 544.

    Article  ADS  Google Scholar 

  81. Garkushin, G.V., Savinykh, A.S., Kanel’, G.I., and Razorenov, S.V., J. Exp. Teor. Phys., 2019, vol. 128, no. 2, p. 268.

    Article  ADS  Google Scholar 

  82. Bogach, A.A. and Utkin, A.V., J. Appl. Mech. Tech. Phys., 2000, vol. 41, no. 4, p. 752.

    Article  ADS  Google Scholar 

  83. Walker, A.M., Sullivan, L.A., Trachenko, K., Bruin, R.P., White, T.O.H., Dove, M.T., Tyer, R.P., Todorov, I.T., and Wells, S.A., J. Phys.: Condens. Matter, 2007, vol. 19, no. 27, p. 27510.

    Google Scholar 

  84. Liu Bin, Wang Jing-Yang, Zhou Yan-Chun, and Li Fang-Zhi, Chin. Phys. Lett., 2008, vol. 25, no. 8, p. 2747.

    Article  ADS  Google Scholar 

  85. Brister, K., Rev. Sci. Instrum., 1997, vol. 68, no. 4, p. 1629.

    Article  ADS  Google Scholar 

  86. McMahon, M.I. and Nelmes, R.J., Chem. Soc. Rev., 2006, vol. 35, p. 943.

    Article  Google Scholar 

  87. Bundy, F.P., Basset, W.A., Weathers, M.S., et al., Carbon, 1996, vol. 34, no. 2, p. 141.

    Article  Google Scholar 

  88. Turkevich, V.Z., High Pressure Res., 2002, vol. 22, no. 3, p. 525.

    Article  ADS  Google Scholar 

  89. Kurdyumov, A.V., Britun, V.F., Borimerchuk, N.I., and Yarosh, V.V., Martensitnye i diffuzionnye prevrashcheniya v uglerode i nitride bora pri udarnom szhatii (Martensitic and Diffusion Transformations in Carbon and Boron Nitride under Shock Compression), Kiev: Izd. Kupriyanova, 2005.

  90. Breusov, O.N. and Dremin, A.N., Russ. J. Phys. Chem. B, 2008, vol. 27, no. 4, p. 21.

    Google Scholar 

  91. Yagi, T., Utsumi, W., Yamakata, M., et al., Phys. Rev. B: Condens. Matter Mater. Phys., 1992, vol. 46, no. 10, p. 6031.

    Article  ADS  Google Scholar 

  92. Kanel’, G.I., Bezruchko, G.S., Savinykh, A.S., Razorenov, S.V., Milyavskii, V.V., and Khishchenko, K.V., High Temp., 2010, vol. 48, no. 6, p. 806.

    Article  Google Scholar 

  93. Scandolo, S., Berasconi, M., Chiarotti, G.L., et al., Phys. Rev. Lett., 1995, vol. 47, no. 20, p. 4015.

    Article  ADS  Google Scholar 

  94. Tateyama, Y., Ogitsu, T., Kusakabe, K., and Tsuneyuki, S., Phys. Rev. B: Condens. Matter Mater. Phys., 1996, vol. 54, no. 21, p. 14994.

    Article  ADS  Google Scholar 

  95. Mundy, C.J., Curioni, A., Goldman, N., et al., J. Chem. Phys., 2008, vol. 128, no. 18, 184701.

    Article  ADS  Google Scholar 

  96. Hanfland, M., Beister, H., and Syassen, K., Phys. Rev. B: Condens. Matter Mater. Phys., 1989, vol. 39, no. 17, p. 12598.

    Article  ADS  Google Scholar 

  97. Ashitkov, S.I., Zhakhovsky, V.V., Inogamov, N.A., Komarov, P.S., Agranat, M.B., and Kanel, G.I., AIP Conf. Proc., 2017, vol. 1793, 100035.

    Article  Google Scholar 

  98. Ashitkov, S.I., Zhakhovsky, V.V., Inogamov, N.A., Komarov, P.S., Agranat, M.V., and Kanel, G.I., AIP Conf. Proc., 2017, vol. 1793, p. 100035.

  99. Clatterbuck, D.M., Chrzan, D.C., and Morris, J.W., Acta Mater., 2003, vol. 51, p. 2271.

    Article  Google Scholar 

  100. Crowhurst, J.C., Reed, B.W., Armstrong, M.R., Radousky, H.B., Carter, J.A., Swift, D.C., Zaug, J.M., Minich, R.W., Teslich, N.E., and Kumar, M., J. Appl. Phys., 2014, vol. 115, 113506.

    Article  ADS  Google Scholar 

  101. Kadau, K., Germann, T.C., Lomdahl, P.S., and Holian, B.L., Phys. Rev. B: Condens. Matter Mater. Phys., 2005, vol. 72, 064120.

    Article  ADS  Google Scholar 

  102. Hawreliak, J., Colvin, J.D., Eggert, J.H., Kalantar, D.H., Lorenzana, H.E., Stolken, J.S., Davies, H.M., Germann, T.C., Holian, B.L., Kadau, K., Lomdahl, P.S., Higginbotham, A., Rosolankova, K., Sheppard, J., and Wark, J.S., Phys. Rev. B: Condens. Matter Mater. Phys., 2006, vol. 74, 184107.

    Article  ADS  Google Scholar 

  103. Hawreliak, J.A., El-Dasher, B., Lorenzana, H., Kimminau, G., Higginbotham, A., Nagler, B., Vinko, S.M., Murphy, W.J., Whitcher, T., Wark, J.S., Rothman, S., and Park, N., Phys. Rev. B: Condens. Matter Mater. Phys., 2011, vol. 83, 144114.

    Article  ADS  Google Scholar 

  104. Zel’dovich, Ya.B. and Kopaneets, A.S., Teoriya detonatsii (Detonation Theory), Moscow: Gos. Izd. Tekh.-Teor. Lit., 1955.

  105. Ashaev, V.K., Doronin, G.S., and Levin, A.D., Combust., Explos. Shock Waves (Engl. Transl.), 1988, vol. 24, no. 1, p. 88.

  106. Utkin, A.V., Pershin, S.V., and Fortov, V.E., Dokl. Phys., 2000, vol. 45, no. 4, p. 520.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Kanel’.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanel’, G.I. On Nanosecond Thermophysics (Review). High Temp 58, 550–565 (2020). https://doi.org/10.1134/S0018151X20040057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X20040057

Navigation