Skip to main content
Log in

A 40 years journey with fish spermatozoa as companions as I personally experienced it

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

When, in the 1980s, I became interested in the spermatology of fish under the light microscope, active spermatozoa were only visible thanks to their head presenting a sort of “tremor.” This situation was quite frustrating given the lack of possible information regarding the motor part called flagellum. We decided to apply simple technologies, including photography. Due to the high speed of the moving fish flagellum, the microscope illumination used a pulsed light strobe combined with a dark field microscope to record the flagellum image despite its small diameter (< 0.5 μm). Then came high-speed cinematographic microscopy up to 200 fps, as well as video cameras. At the end of the 1990s, an automatic moving object video tracking system began to be commercialized (CASA) with main advantages such as (a) a large number of cells tracked, which greatly improves statistics, (b) computer assistance allowing an automatic analysis that provides many motility parameters. Nevertheless, CASA systems are still unable to provide information about fish sperm flagella that move fast. During the 1990s, analog video camera technologies allowed acquisition of flagellum images with high resolution for detailed analysis. Since the 2000s, the use of high-speed video cameras allows the acquisition of images at a much higher resolution and frequency, up to 10,000 frames per second. Since it became possible to visualize the flagella in motion, a noble function was added to that of a propeller: that of a rudder with what a spermatozoon responds to specific signals delivered by the egg for its guidance. In the future, one can wish that an automatic flagella movement analyzer will become functional. This brief anthology puts forward the large amount of progress accomplished during past 40-year period about spermatozoa movement analysis, especially in fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alavi SMH, Cosson J (2005) Sperm motility in fishes: (II) Effects of ions and osmotic pressure: a review. Cell Biol Int 30:1–14

    Article  Google Scholar 

  • Alavi SMH, Cosson J, Bondarenko O, Linhart O (2019) Sperm motility in fishes: (III) diversity of regulatory signals from membrane to the axoneme. Theriogenology 136:143–165

    Article  CAS  Google Scholar 

  • Allen RD (1985) New observations on cell architecture and dynamics by video-enhanced contrast optical microscopy. Annu Rev Biophys Biophys Chem 14:265–290. https://doi.org/10.1146/annurev.bb.14.060185.001405

    Article  CAS  PubMed  Google Scholar 

  • Baba SA, Mogami Y (1985) An approach to digital image analysis of bending shapes of eukaryotic flagella and cilia. Cell Mot 5:475–489

    Article  Google Scholar 

  • Billard R, Cosson J, Crim M, Suquet M (1994) Physiology and quality of sperm in fish. Europ Aquat Soc (Spec Publ) 19:203–218

    Google Scholar 

  • Billard R, Cosson J, Crim LW, Suquet M (1995) Sperm physiology and quality. In: Bromage NR, Roberts RJ (eds) Broodstock Management and Egg and Larval Quality. Blackwell Sciences, Ltd., Cambridge, pp 25–52

    Google Scholar 

  • Billard R, Cosson J, Noveiri SB, Pourkazemi M (2004) Cryopreservation and short-term storage of sturgeon sperm, a review. Aquaculture 236(1-4):1–9

    Article  CAS  Google Scholar 

  • Bondarenko O, Yoshida M, Yoshida M, Ono C, Dzyuba B, Cosson J (2015) The role of Ca2+ transport and plasma membrane Ca2+-ATPase (PMCA) activity in membrane potential alteration during bester sperm motility. In: Proceedings of the 5th International Workshop on the Biology of Fish Gametes, 7-11 September 2015, Ancona, Italy, P. 180-181

  • Bondarenko V, Prokopchuk G & Cosson J (2018) Fish sperm flagella: original features and biological implications through the lens of modern technologies. e-book chapter in “Flagella and Cilia: Types, Structure and Functions”. R. Uzbekov Ed., Nova publisher, pp. 49-82

  • Boryshpolets S, Kholodnyy V, Cosson J, Dzyuba B (2018) Fish sperm motility analysis: the central role of the flagellum. Reprod Fertil Dev 30:833–841. https://doi.org/10.1071/RD17478

    Article  PubMed  Google Scholar 

  • Brokaw CJ (1984) Automated methods for estimation of sperm flagellar bending parameters. Cell Mot 4:417–430

    Article  CAS  Google Scholar 

  • Brokaw CJ (1989) Direct measurements of sliding between outer doublet microtubules in swimming sperm flagella. Science 243(4898):1593–1596.a. https://doi.org/10.1126/science.2928796

    Article  CAS  PubMed  Google Scholar 

  • Brokaw CJ (2006) Flagellar propulsion. J Exp Biol 209:985–986

    Article  Google Scholar 

  • Butts IAE, Prokopchuk G, Kašpar V, Jacky Cosson J, Pitcher TE (2017) Ovarian fluid impacts flagella beating and biomechanical metrics of sperm between alternative reproductive tactics. J Exp Biol 220:2210–2217. https://doi.org/10.1242/jeb.154195

    Article  PubMed  Google Scholar 

  • Chauvaud L, Cosson J, Suquet M, Billard R (1995) Sperm motility in turbot (Scophthalmus maximus): initiation of movement and changes with time of swimming characteristics. Environ Biol Fish 43:341–349 (30)

    Article  Google Scholar 

  • Cosson J (1977) The mitochondrial ATPase complex: structure and function in oligomycin-resistant yeast mutants Saccharomyces cerevisiae. Thèse de Doctorat d'Etat, Université de Paris-Sud (Orsay) N° 1770, defended on April 25 1977

  • Cosson M-P (1990) Sperm chemotaxis. In: Gagnon C (ed) Controls of Sperm motility: biological and clinical aspects. CRC Press, Boca Raton, pp 103–136

    Google Scholar 

  • Cosson J (1996) A moving image of flagella: news and views on the mechanisms involved in axonemal beating. Cell Biol Int 20:83–94

    Article  CAS  Google Scholar 

  • Cosson J (2004) The ionic and osmotic factors controlling motility of fish spermatozoa. Aquac Int 12:69–85

    Article  CAS  Google Scholar 

  • Cosson J (2008) The motility apparatus of fish spermatozoa. In “Fish Spermatology” (Chapter 9) Alavi SMH, Cosson JJ, Coward K and Rafiee G Eds, Oxford, Alpha Science International Ltd. (ISBN 978-1-84265-369-2), pp 281-316

  • Cosson J (2012) ATP, the sperm movement energizer. Chapter 1 in “Adenosine Triphosphate: Chemical properties, Biosynthesis and Functions in cells”. Kuestler E. and Traugott G. Editors, Nova Publisher Inc. pp. 1-46. ISBN 978-1-62417-890-0

  • Cosson J (2015) Flagellar mechanics and sperm guidance. Cosson J. Editor, Bentham Books Publisher. 424 pages, eISBN: 978-1-68-108-128-1, ISBN: 978-1-68-108-129-8. (e-Book 2015)

  • Cosson J (2019) Fish sperm physiology: structure, factors regulating motility and motility evaluation. In “Recent Developments in Fish Biology Researches”, Yusuf Bozkurt Ed., IntechOpen Publisher (accepted) ISBN 978-1-78923-814-3

  • Cosson J and Bondarenko V (2019) Structure and beating behavior of the sperm motility apparatus of aquatic animals. Special issue in Theriogenology (accepted). https://doi.org/10.1016/j.theriogenology.2019.06.005

  • Cosson J and Prokopchuk G (2014) Wave propagation in flagella. In “Wave propagation”; Mateus Gomez Editor, Academy Publish Org. (Cheyenne). pp. 541-583. ISBN: 978-1-941249-01-7

  • Cosson J, Huitorel P, Gagnon C (2003) How spermatozoa come to be confined to surfaces. Cell Motil Cytoskeleton 54(1):56–63

    Article  CAS  Google Scholar 

  • Dadras H, Dzyuba B, Cosson J, Golpour A, Siddique MAM, Linhart O (2017) Effect of water temperature on the physiology of fish spermatozoon function: a brief review. Aquac Res 48:729–740

    Article  Google Scholar 

  • Darszon A, Beltrán C, Felix R, Nishigaki T, Treviño CL (2001) Ion transport in sperm signaling. Dev Biol 240(1):1–14. https://doi.org/10.1006/dbio.2001.0387

    Article  CAS  PubMed  Google Scholar 

  • Dreanno C, Suquet M, Quemener L, Cosson J, Fierville F, Normand Y, Billard R (1997) Cryopreservation of Turbot (Scophthalmus maximus) sperm. Theriogenology 48:589–603

    Article  CAS  Google Scholar 

  • Dzyuba V, Cosson J (2014) Motility of fish spermatozoa: from external signaling to flagella response. Reprod Biol 14(3):165–175. https://doi.org/10.1016/j.repbio.2013.12.005

    Article  PubMed  Google Scholar 

  • Dzyuba B, Bondarenko O, Gazo I, Prokopchuk G, Fedorov P, Cosson J (2017) Energetics of fish spermatozoa: the proven and the possible. Aquaculture 472:60–72. https://doi.org/10.1016/j.aquaculture.2016.05.038

    Article  CAS  Google Scholar 

  • Dzyuba B, Legendre M, Baroiller JF, Cosson J (2019) Sperm motility of the Nile tilapia (Oreochromis niloticus): effects of temperature on the swimming characteristics. Anim Reprod, accepted. https://doi.org/10.1016/j.anireprosci.2019.01.010

  • Eisenbach M, Giojalas LC (2006) Sperm guidance in mammals - an unpaved road to the egg. Nat Rev Mol Cell Biol 7(4):276–285. https://doi.org/10.1038/nrm1893

    Article  CAS  PubMed  Google Scholar 

  • Fauvel C, Suquet M, Cosson J (2010) Evaluation and determinism of fish sperm quality. J Appl Ichthyol 26:636–643

    Article  CAS  Google Scholar 

  • Fawcett DW, Phillips DM (1970) Recent observations on the ultrastructure and development of the mammalian spermatozoon. In: Baccetti B (ed) Spermatologia comparata. Accademia Nazionale Dei Lincei, Roma, pp 13–35

    Google Scholar 

  • Gagnon C (1995) Regulation of sperm motility at the axonemal level. Reprod Fertil Dev 7:189–198

    Article  Google Scholar 

  • Gagnon C (1998) “The Male Gamete: from Basic Knowledge to Clinical Applications” C. Gagnon Ed., Cache River Press (Proceedings of the 8th Int. Symp. on Spermatology, Montréal, August 17-22/1998)

  • Gallagher MT et al (2019) Rapid sperm capture: high-throughput flagellar waveform analysis. Hum Reprod 34:1173–1185. https://doi.org/10.1093/humrep/dez056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibbons I (1981) Cilia and flagella of eukaryotes. J Cell Biol:107s–124s. https://doi.org/10.1083/jcb.91.3.107s

  • Gibbons BH, Gibbons IR (1972) Flagellar movement and adenosine triphosphatase activity in sea urchin sperm extracted with triton X-100. J Cell Biol 54(1):75–97. https://doi.org/10.1083/jcb.54.1.75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillies EA, Bondarenko V, Cosson J, Pacey AA (2013) Fins improve the swimming performance of fish sperm: a hydrodynamic analysis of the Siberian sturgeon Acipenser baerii. Cytoskeleton 70(2):85–100. https://doi.org/10.1002/cm.21093

    Article  CAS  PubMed  Google Scholar 

  • Gray J, Hancock GJ (1955) The propulsion of sea-urchin spermatozoa. J Exp Biol 32:802–814

    Article  Google Scholar 

  • Holwill ME (1966) Physical aspects of flagellar movement. Physiol Rev 46:696–785

    Article  Google Scholar 

  • Holwill ME, Satir P, Sugrue PA, Avolio J (1991) Modelling the axoneme. In: Baccetti B (ed) Comparative Spermatology 20 years after. Raven Press, Rome, pp 377–384

    Google Scholar 

  • Huitorel P, Audebert S, White D, Cosson J and Gagnon C (1999) Role of tubulin epitopes in the regulation of flagellar motility Book chapter in “The Male Gamete: from Basic Knowledge to Clinical Applications” C. Gagnon Ed., Cache River Press (Proceedings of the 8th Int. Symp. on Spermatology, Montréal, Canada, August 17-22/1998) pp.475-492

  • Inaba K, Dreanno C, Cosson J (2003) Control of flatfish sperm motility by CO2 and carbonic anhydrase. Cell Motil Cytoskeleton 55:174–187

    Article  CAS  Google Scholar 

  • Ishimoto K, Cosson J, Gaffney EA (2016) A simulation study of sperm motility hydrodynamics near fish eggs and spheres. J Theor Biol 389:187–197. https://doi.org/10.1016/j.jtbi.2015.10.013

    Article  PubMed  Google Scholar 

  • Linhart O, Cosson J, Rodina M (2000) Rodina. Cryopreservation of sperm in common carp, Cyprinus carpio: sperm motility and embryonic hatching success. Cryobiology 41:241–250

    Article  CAS  Google Scholar 

  • Linhart O, Hadi ASM, Marek R, David G, Cosson J (2008a) After finishing of motility, common carp (Cyprinus carpio) sperm is able to re-initiate a second motility period and to fertilize eggs. Cybium 32(2):187–188

    Google Scholar 

  • Linhart O, Alavi SMH, Rodina M, Gela D, Cosson J (2008b) Comparison of sperm velocity, motility rate and fertlilizing ability of firstly and secondly activated carp sperm. J Appl Ichthyol 24:386–392

    Article  Google Scholar 

  • Miller RL (1973) Chemotaxis of animal spermatozoa. In: Perez Miravete A (ed) Behavior of microorganisms. Plenum Press, London, pp 31–47

    Google Scholar 

  • Miller RL (1985) Sperm chemo-orientation in metazoa. In: Metz CB, Monroy A (eds) Biology of fertilization, vol 2. Academic Press, New York, pp 275–337. https://doi.org/10.1016/B978-0-12-492602-8.50015-2

    Chapter  Google Scholar 

  • Morisawa M (1994) Cell signaling mechanisms for sperm motility. Zool Sci 11(5):647–662

    CAS  Google Scholar 

  • Morisawa M, Ishida K (1987) Short-term changes in levels of cyclic AMP, adenylate cyclase, and phosphodiesterase during the initiation of sperm motility in rainbow trout. J Exp Zool 242(2):199–204

    Article  CAS  Google Scholar 

  • Pacey A, Cosson J, Bentley M (1994) The acquisition of forward motility in the sperm of the polychaete Arenicola marina (L.). J Exp Biol 195(1):259–280.a

    Article  CAS  Google Scholar 

  • Perchec G, Jeulin C, Cosson J, Andre F, Billard R (1995) Relationship between sperm ATP content and motility of carp spermatozoa. J Cell Sci 108:747–753 (58)

    Article  CAS  Google Scholar 

  • Perchec-Poupard G, Gatti J-L, Cosson J, Jeulin C, Fierville F, Billard R (1997) Effects of extracellular environment on the osmotic signal transduction involved in activation of motility of carp spermatozoa. J Reprod Fertil 110(2):315–327. https://doi.org/10.1530/jrf.0.1100315

    Article  CAS  PubMed  Google Scholar 

  • Prokopchuk G and Cosson J (2017) Biophysics of fish sperm flagellar movement: up-dated knowledge and original directions. Book chapter in “Cytoskeleton. - Structure, Dynamics, Function and Disease” Jose C. Jimenez-Lopez Ed., Intech open access Publisher, pp. 127-150. ISBN 978-953-51-3170-0

  • Prokopchuk G, Dzuba B, Boryshpolet S, Linhart O, Cosson J (2015) Motility initiation in fish spermatozoa: description of the propagation of very first initial waves. Theriogenology 84(1):51–61. https://doi.org/10.1016/j.theriogenology.2015.02.011

    Article  PubMed  Google Scholar 

  • Prokopchuk G, Dzyuba B, Rodina M, Cosson J (2016) Control of sturgeon sperm motility: antagonism between K+ ions concentration and osmolarity. Anim Reprod 164:82–89. https://doi.org/10.1016/j.anireprosci.2015.11.015

    Article  CAS  Google Scholar 

  • Sato H, Greuet C, Cachon M, Cosson J (2004) Analysis of the contraction of an organelle using its birefringency: the R-fibre of the Ceratium (Dinoflagellate) flagellum. Cell Biol Int 28-5:387–396

    Article  Google Scholar 

  • Saudrais C, Fierville F, Cibert C, Loir M, Le Rumeur E, Cosson J (1998) The use of phosphocreatine plus ADP as energy source for motility of membrane deprived trout spermatozoa. Cell Motil Cytoskeleton 41:91–106

    Article  CAS  Google Scholar 

  • Schöevaërt D et al (1990) A new automated method of image analysis: comparison of ciliary and flagellar beats. Biorheology 27:567–579

    Article  Google Scholar 

  • Shaliutina-Kolešová A, Gazo I, Cosson J, Linhart O (2014) Protection of common carp (Cyprinus carpio L.) spermatozoa motility under oxidative stress by antioxidants and seminal plasma A. Fish Physiol Biochem 40(6):1771–1781. https://doi.org/10.1007/s10695-014-9966-z

    Article  CAS  PubMed  Google Scholar 

  • Suquet M, Dreanno C, Fauvel C, Cosson J, Billard R (2000) Cryopreservation of sperm in marine fish. Aquac Res 31:231–243

    Article  Google Scholar 

  • Tsvetkova LI, Cosson J, Linhart O, Billard R (1996) Motility & fertilizing capacity of fresh & frozen-thawed spermatozoa in sturgeons (Acipenser baeri & A. ruthenus). J Appl Ichthyol 12:107–112

    Article  Google Scholar 

  • van Leeuwenhoek A (1678) Observationes de natis e semine genitali animalculis. Phil Trans R Soc A 12:1040–1046

    Google Scholar 

  • Yanagimachi R, Cherr G, Matsubara T, Andoh T, Harumi T, Vines C, Pillai M, Griffin F, Matsubara H, Weatherby T, Kaneshiro K (2013) Sperm attractant in the micropyle region of fish and insect eggs. Biol Reprod 88(2):47. https://doi.org/10.1095/biolreprod.112.105072

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M, Murata M, Inaba K, Morisawa M (2002) A chemoattractant for ascidian spermatozoa is a sulfated steroid. Proc Natl Acad Sci U S A 99(23):14831–14836

    Article  CAS  Google Scholar 

  • Yoshida M, Ishikawa M, Izumi H, De Santis R, Morisawa M (2003) Store-operated calcium channel regulates the chemotactic behavior of ascidian sperm. Proc Natl Acad Sci U S A 100(1):149–154

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is highly thankful to all co-workers from all over the world who friendly contributed to a better knowledge of the movement of the fish sperm flagellum.

Funding

Part of this work was supported during the period anteriorly to my retirement, by the CNRS in France and posteriorly by several grants from Czech Republic: CENAKVA LM2018099, CZ.02.1.01./0.0/0.0/16_025/0007370 and from European Union’s Horizon 2020 research and innovation program (No 652831 AQUAEXCEL2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacky Cosson.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cosson, J. A 40 years journey with fish spermatozoa as companions as I personally experienced it. Fish Physiol Biochem 47, 757–765 (2021). https://doi.org/10.1007/s10695-020-00882-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-020-00882-w

Keywords

Navigation