Skip to main content

Advertisement

Log in

Electronic waste generation, regulation and metal recovery: a review

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Waste will become the major resource in the future circular economy. In particular, E-waste is a major sector growing at an annual rate of about 2 million tonnes (Mt) with rising users of electrical and electronic items worldwide. This is a consequence of versatility and affordability of technological innovation, thus resulting in massive sales and e-waste increases. Most end-users lack knowledge on proper recycling or reuse, often disposing of e-waste as domestic waste. Such improper disposals are threatening life and ecosystems because e-waste is rich in toxic metals and other pollutants. Here we review e-waste generation, policies and recycling methods. In 2019, the world e-waste production reached 53.6 Mt, including 24.9 Mt in Asia, 13.1 Mt in USA, 12 Mt in Europe. In Asia, China (10.1 Mt), India (3.23 Mt), Japan (2.57 Mt) and Indonesia (1.62 Mt) are the largest producers contributing to about 70% of the total world e-waste generated. Only 17.4% (9.3 Mt) of the world e-waste was recycled by formal means, and the remaining 82.6% (44.3 Mt) was left untreated or processed informally. As a consequence, most countries have framed policies to provide regulatory guidelines to producers, end-users and recyclers. Yet the efficiency of these local policies are limited by the transfer of products across borders in a globalized world. Among formal recycling techniques, biohydrometallurgy appears most promising compared to pyrometallurgy and hydrometallurgy, because biohydrometallurgy overcomes limitations such as poor yield, high capital cost, toxic chemicals, release of toxic gases and secondary waste generation. Challenges include consumer’s contempt on e-waste disposal, the deficit of recycling firms and technology barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

3R:

Reduce, reuse and recycle

Ag:

Silver

Al:

Aluminium

As:

Arsenic

Au:

Gold

CAGR:

Compound annual growth rate

Cd:

Cadmium

Co:

Cobalt

CPCB:

Central pollution control board

Cr:

Chromium

Cu:

Copper

E-waste:

Electronic waste

H2SO4 :

Sulphuric acid

HARL:

Home appliance recycling law

HCl:

Hydrochloric acid

Hg:

Mercury

HNO3 :

Nitric acid

Mn:

Manganese

MOEF & CC:

Ministry of environment forest and climate change

MPPI:

Mobile phone partnership initiative

Mt:

Million tonnes

NEPSI:

National electronics product stewardship initiative

NGOs:

Non-Government Organizations

Ni:

Nickel

PACE:

Partnership for Action on Computing Equipment

Pb:

Lead

PBDD:

Poly-brominated-di-benzodioxins

PBDF:

Poly-brominated-di-benzofurans

PCDD:

Poly-chlorinated di-benzo-p-dioxins

PCDF:

Poly-chlorinated di-benzo-furans

Pd:

Palladium

Pt:

Platinum

RoHS:

Restriction of certain Hazardous Substances

SARL:

Small Appliance Recycling Law

Se:

Selenium

TSL:

Top Submerged Lance

WEEE:

Waste Electrical or Electronic Equipment

wPCBs:

Waste Printed Circuit Boards

Zn:

Zinc

References

  • Abbruzzese C, Fornari P, Massidda R, Veglio`, F., Ubaldini, S. (1995) Thiosulphate leaching for gold hydrometallurgy. Hydrometallurgy 39(1–3):265–276. https://doi.org/10.1016/0304-386X(95)00035-F

    Article  CAS  Google Scholar 

  • Abdu N, Abdullahi AA, Abdulkadir A (2017) Heavy metals and soil microbes. Environ Chem Lett 15:65–84. https://doi.org/10.1007/s10311-016-0587-x

    Article  CAS  Google Scholar 

  • Åkesson A, Lundh T, Vahter M, Bjellerup P, Lidfeldt J, Nerbrand C (2005) Tubular and glomerular kidney effects in Swedish women with low environmental cadmium exposure. Environ Health Perspect, pp 1627–1631

  • Alabi OA, Bakare AA, Xu X, Li B, Zhang Y, Huo X (2012) Comparative evaluation of environmental contamination and DNA damage induced by electronic-waste in Nigeria and China. Sci Total Environ 423:62–72. https://doi.org/10.1016/j.scitotenv.2012.01.056

    Article  CAS  Google Scholar 

  • Aleksandrovich S, Nicolaevich E, Ivanovich E (1998) Method of processing of products based on ahalcogenides of base metals containing metalsof platinum group and gold, Russian Patent, RU2112064, C22B 11/02.

  • Ali H, Khan E (2018) Bioaccumulation of non-essential hazardous heavy metals and metalloids in freshwater fish. Risk to human health. Environ Chem Lett 16: 903–917 (2018). https://doi.org/https://doi.org/10.1007/s10311-018-0734-7

  • Amoabeng Nti AA, Arko-Mensah J, Botwe PK, Dwomoh D, Kwarteng L, Takyi SA et al (2020) Effect of particulate matter exposure on respiratory health of e-waste workers at Agbogbloshie, Accra, Ghana. Int J Environ Res Public Health 17(9):E3042. https://doi.org/10.3390/ijerph17093042

    Article  CAS  Google Scholar 

  • Anjum F, Shahid M, Akcil A (2012) Biohydrometallurgy techniques of low grade ores: a review on black shale. Hydrometallurgy 117–118:1–12

    Google Scholar 

  • Annamalai M, Gurumurthy K (2019) Enhanced bioleaching of copper from circuit boards of computer waste by Acidithiobacillus ferrooxidans. Environ Chem Lett 17:1873–1879. https://doi.org/10.1007/s10311-019-00911-y

    Article  CAS  Google Scholar 

  • Argumedo-Delira R, Gómez-Martínez MJ, Soto BJ (2019) Gold bioleaching from printed circuit boards of mobile phones by Aspergillus Niger in a culture without agitation and with glucose as a carbon source. Metals 9:521. https://doi.org/10.3390/met9050521

    Article  CAS  Google Scholar 

  • Arshadi M, Mousavi S (2015) Enhancement of simultaneous gold and copper extraction from computer printed circuit boards using Bacillus megaterium. Biores Technol 175:315–324

    CAS  Google Scholar 

  • Arunachalam T, Karpagasundaram M, Rajarathinam N (2017) Ultrasound assisted green synthesis of cerium oxide nanoparticles using Prosopis juliflora leaf extract and their structural, optical and antibacterial properties. Mater Sci Poland 35(4):791–798. https://doi.org/10.1515/msp-2017-0104

    Article  CAS  Google Scholar 

  • Aung KMM, Ting YP (2005) Bioleaching of spent fluid catalytic cracking catalyst using Aspergillus niger. J Biotechnol 116:159–170

    CAS  Google Scholar 

  • Awasthi AK, Li J (2017) An overview of the potential of eco-friendly hybrid strategy for metal recycling from WEEE. Resour. Conserv. Recycl. 126:228–239. https://doi.org/https://doi.org/10.1016/j.resconrec.2017.07.014

  • Awasthi AK, Li J (2017) Management of electrical and electronic waste: a comparative evaluation of China and India. Renew Sustain Energy Rev 76:434–447

    Google Scholar 

  • Bai J, Gu W, Dai J, Zhang C, Yuan W, Deng M, Luo X, Wang J (2016) The catalytic role of nitrogen-doped carbon nanotubes in bioleaching copper from waste printed circuit boards. Pol. J. Environ. Stud. 25(3):951. http://doi.org/https://doi.org/10.15244/pjoes/61816

  • Barbieri L, Giovanardi R, Lancellotti I et al (2010) A new environmentally friendly process for the recovery of gold from electronic waste. Environ Chem Lett 8:171–178. https://doi.org/10.1007/s10311-009-0205-2

    Article  CAS  Google Scholar 

  • Barragan JA, Ponce de León C, AlemánCastro JR, Peregrina-Lucano A, Gómez-Zamudio F (2020) Erika roxana larios-durán copper and antimony recovery from electronic waste by hydrometallurgical and electrochemical techniques. ACS Omega 5(21):12355–12363. https://doi.org/10.1021/acsomega.0c01100

    Article  CAS  Google Scholar 

  • Bas AD, Deveci H, Yazici EY (2014) Treatment of manufacturing scrap TV boards by nitric acid leaching. Sep Purif Technol 130:151–159. https://doi.org/10.1016/j.seppur.2014.04.008

    Article  CAS  Google Scholar 

  • Bas AD, Koc E, Yazici YE, Deveci H (2015). Treatment of copper-rich gold ore by cyanide leaching, ammonia pretreatment and ammoniacal cyanide leaching. Trans. Nonferrous. Met. Soc. China Engl. Ed. 25(2), 597–607. https://doi.org/https://doi.org/10.1016/S1003-6326(15)63642-1.

  • Behnamfard A, Salarirad MM, Veglio F (2013) Process development for recovery of copper and precious metals from waste printed circuit boards with emphasize on palladium and gold leaching and precipitation. Waste Manage 33(11):2354–2363

    CAS  Google Scholar 

  • Birloaga I, Vegliò F (2016) Study of multi-step hydrometallurgical methods to extract the valuable content of gold, silver and copper from waste printed circuit boards. J Environ Chem Eng 4(1):20–29. https://doi.org/10.1016/j.jece.2015.11.021

    Article  CAS  Google Scholar 

  • Birloaga I, Coman V, Kopacek B, Vegliò F (2014) An advanced study on the hydrometallurgical processing of waste computer printed circuit boards to extract their valuable content of metals. Waste Manage 34:2581–2586

    CAS  Google Scholar 

  • Brandl H, Bosshard R, Wegmann M (2001) Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy 59:319–326

    CAS  Google Scholar 

  • Brandle H, Lelmann S, Faramarzi MA, Martinelli D (2008) Biomobilization of silver, gold, and platinum from solid waste materials by HCN-forming microorganisms. Hydrometallurgy 94(1–4):14–17

    Google Scholar 

  • Brandtl H, Lehmann S, Faramarzi MA, Martinelli D (2008) Biomobilization of silver, gold, and platinum from solid waste materials by HCN-forming microorganisms. Hydrometallurgy 94:14–17

    Google Scholar 

  • Brierley CL (2016). In: Lakshmanan VI, Roy R, Ramachandran V (eds) Innovative process development in metallurgical industry. Springer International Publishing, Cham, p 109

    Google Scholar 

  • Brumfiel G (2003) Nanotechnology: a little knowledge. Nature 424:246–248

    CAS  Google Scholar 

  • Brusselaers J, Hageluken C, Mark F, et al. (2005) An eco-efficient solution for plastics-metals-mixtures from electronic waste: the integrated metals smelter. In: 5TH IDENTIPLAST 2005, the biennial conference on the recycling and recovery of plastics identifying the opportunities for plastics recovery, Brussels, Belgium

  • Bryan CG, Watkin EL, McCredden TJ, Wong ZR, Harrison STL, Kaksonen AH (2015) The use of pyrite as a source of lixiviant in the bioleaching of electronic waste. Hydrometallurgy 152:33–43

    CAS  Google Scholar 

  • Calgaro CO, Schlemmer DF, Da Silva MDCR, Maziero EV, Tanabe EH, Bertuol DA (2015) Fast copper extraction from printed circuit boards using supercritical carbon dioxide. Waste Manag 45:289–297. https://doi.org/10.1016/j.wasman.2015.05.017

    Article  CAS  Google Scholar 

  • Camelino S, Rao J, Padilla RL, Lucci R (2015) Initial studies about gold leaching from printed circuit boards (PCB’S) of waste cell phones. Procedia Materials Science 9:105–112. https://doi.org/10.1016/j.mspro.2015.04.013

    Article  CAS  Google Scholar 

  • Cayumil R, Khanna R, Ikram-Ul-Haq M, Rajarao R, Hill A, Sahajwalla V (2014) Generation of copper rich metallic phases from waste printed circuit boards. Waste Manage 34(10):1783–1792

    CAS  Google Scholar 

  • Chem. Eng. J., 2017, 309, 655 —662

  • Chen M, Huang J, Ogunseitan OA, Zhu N, Wang Y (2015) Comparative study on copper leaching from waste printed circuit boards by typical ionic liquid acids. Waste Manag 41:142–147. https://doi.org/10.1016/j.wasman.2015.03.037

    Article  CAS  Google Scholar 

  • Chen S, Yang Y, Liu C, Dong F, Liu B (2015) Column bioleaching copper and its kinetics of waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans. Chemosphere 141:162–168

    CAS  Google Scholar 

  • Cong X, Xu X, Xu L, Li M, Xu C, Qin Q, Huo X (2018) Elevated biomarkers of sympatho-adrenomedullary activity linked to e-waste air pollutant exposure in preschool children. Environ Int 115:117–126. https://doi.org/10.1016/j.envint.2018.03.011

    Article  CAS  Google Scholar 

  • Cui H, Anderson C (2020) Hydrometallurgical treatment of waste printed circuit boards: bromine. Leach Metals 10:462. https://doi.org/10.3390/met10040462

    Article  CAS  Google Scholar 

  • Cui H, Anderson CG (2016) Literature review of hydrometallurgical recycling of printed circuit boards (PCBs). J Adv Chem Eng 6:1–11. https://doi.org/10.4172/2090-4568.1000142

    Article  CAS  Google Scholar 

  • Cui J, Zhang L (2008) Metallurgical recovery of metals from electronic waste: a review. J Hazard Mater 158:228–256

    CAS  Google Scholar 

  • Das S, Natarajan G, Ting YP (2017) Bio-extraction of precious metals from urban solid waste. AIP Conf Proc 1805:1–9

    Google Scholar 

  • Davis JM, Garb Y (2019) A strong spatial association between e-waste burn sites and childhood lymphoma in the West Bank, Palestine. Int J Cancer 144(3):470–475. https://doi.org/10.1002/ijc.31902

    Article  CAS  Google Scholar 

  • Day JG (1984) Recovery of platinum group metals, gold and silver from scrap, US Patent, US4427442

  • Decharat S (2018) Urinary mercury levels among workers in E-waste shops in Nakhon Si Thammarat Province, Thailand. J Prev Med Public Health 51(4):196–204. https://doi.org/10.3961/jpmph.18.049

    Article  Google Scholar 

  • Deng X, Chai L, Yang Z, Tang C, Tong H, Yuan P (2012) Bioleaching of heavy metals from a contaminated soil using indigenous Penicillium chrysogenum strain F1. J Hazard Mater 233:25–32

    Google Scholar 

  • Ding Y, Zhanga S, Liua B, Zhenga H, Changb C (2019) Christian Ekberg recovery of precious metals from electronic waste and spent catalysts: a review resources. Conserv Recycl 141:284–298

    Google Scholar 

  • Ding Y, Zhang S, Liu B, Li B (2017) Integrated process for recycling copper anode slime from electronic waste smelting. J Clean Prod 165:48–56

    CAS  Google Scholar 

  • Dunn J, Wendell E, Carda DD et al (1991) Chlorination process for recovering gold values from gold alloys, US Patent, US5004500

  • Dutta T, Kim KH, Deep A, Szulejko JE, Vellingiri K, Kumar S et al (2018) Recovery of nanomaterials from battery and electronic wastes: a new paradigm of environmental waste management. Renew Sustain Energy Rev 82:3694–3704. https://doi.org/10.1016/j.rser.2017.10.094

    Article  CAS  Google Scholar 

  • Edelstein AS, Cammaratra RC (1998) Nanomaterials: synthesis, properties and applications. CRC Press, London

    Google Scholar 

  • Faramarzi MA, Stagars M, Pensini E, Krebs W, Brandl H (2004) Metal solubilization from metal-containing solid materials by cyanogenic Chromobacterium violaceum. J Biotechnol 113:321–326

    CAS  Google Scholar 

  • Ficeriová J, Balaz P, Gock E (2011) Leaching of gold, silver and accompanying metals from circuit boards (PCBs) waste. Acta Montanistica Slovac. Košice, Slovakia, pp 128–131

    Google Scholar 

  • Fogarasi S, Imre-Lucaci F, Egedy A, Imre-Lucaci Á, Ilea P (2015) Eco-friendly copper recovery process from waste printed circuit boards using Fe3+/Fe2+ redox system. Waste Manag 40:136–143. https://doi.org/10.1016/j.wasman.2015.02.030

    Article  CAS  Google Scholar 

  • Forti V, Balde C.P, Kuehr R, Bel G. The Global E-waste Monitor (2020) Quantities, flows and the circular economy potential. United Nations University (UNU)/United Nations Institute for Training and Research (UNITAR) – co-hosted SCYCLE Programme, International Telecommunication Union (ITU) and International Solid Waste Association (ISWA), Bonn/Geneva/Rotterdam

  • Forti V, Baldé CP, Kuehr R (2018) E-waste statistics guidelines on classification, reporting and indicators. Edited by ViE - SCYCLE United Nations University. Bonn, Germany

  • Fowler BA (2017) Electronic waste - toxicology and public health issues. Academic Press, Cambridge

    Google Scholar 

  • Fu J, Zhang A, Wang T, Qu G, Shao J, Yuan B (2013) Influence of e-waste dismantling and its regulations: temporal trend, spatial distribution of heavy metals in rice grains, and its potential health risk. Environ Sci Technol 47:7437–7445

    CAS  Google Scholar 

  • Garg H, Nagar N, Ellamparuthy G, Angadi SI, Gahan CS (2019) Bench scale microbial catalysed leaching of mobile phone PCBs with an increasing pulp density. Heliyon. 5(12):e02883. https://doi.org/10.1016/j.heliyon.2019.e02883

    Article  Google Scholar 

  • Ghosh B, Ghosh M, Parhi P, Mukherjee PS, Mishra BK (2015) Waste printed circuit boards recycling: an extensive assessment of current status. J Clean Prod 94:5–19. https://doi.org/10.1016/j.jclepro.2015.02.024

    Article  CAS  Google Scholar 

  • Grant K, Goldizen FC, Sly PD, Brune MN, Neira M, Van den Berg M (2013) Health consequences of exposure to e-waste: a systematic review. Lancet Glob Health 1:e350–e361

    Google Scholar 

  • Gu W, Bai J, Dong B, Zhuang X, Zhao J, Zhang C, Shih K (2017) Enhanced bioleaching efficiency of copper from waste printed circuit board driven by nitrogen-doped carbon nanotubes modified electrode. Chem Eng J 324:122–129. https://doi.org/10.1016/j.cej.2017.05.024

    Article  CAS  Google Scholar 

  • Gupta VK, Tyagi I, Sadegh H, Shahryari-Ghoshekand R, Makhlouf ASH, Maazinejad B (2015) Nanoparticles as adsorbent: a positive approach for removal of noxiousmetal ions: a review. Sci Technol Dev 34:195

    Google Scholar 

  • Ha VH, Lee J, Huynh TH, Jeong J, Pandey BD (2014) Optimizing the thiosulfate leaching of gold from printed circuit boards of discarded mobile phone. Hydrometallurgy 149:118–126

    CAS  Google Scholar 

  • Ha VH, Lee J, Jeong J, Haia HT, Jha MK (2010) Thiosulfate leaching of gold from waste mobile phones. J Hazard Mater 178(1–3):1115–1119

    CAS  Google Scholar 

  • Hadi P, Xu M, Lin CSK, Hui CW, McKay G (2015) Waste printed circuit board recycling techniques and product utilization. J Hazard Mater 283:234–243. https://doi.org/10.1016/j.jhazmat.2014.09.032

    Article  CAS  Google Scholar 

  • Hageluken C (2007) Recycling of e-scrap in a global environment: opportunities and challenges. In: Rajeshwari KV, Basu S, Johri R (eds) Tackling e-waste towards efficient management techniques. TERI Press, New Delhi, pp 87–104

    Google Scholar 

  • Hoang J, Reuter MA, Matusewicz R, Hughes S, Piret N (2009) Top submerged lance direct zinc smelting. Miner Eng 22:742–751

    CAS  Google Scholar 

  • Horeh NB, Mousavi SM, Shojaosadati SA (2016) Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger. J Power Sources 320:257–266. https://doi.org/10.1016/j.jpowsour.2016.04.104

    Article  CAS  Google Scholar 

  • https://www.sulabhenvis.nic.in/Database/LokSabha_8142.aspx

  • https://tokyo2020.org/en/games/medals-project/

  • https://www.opensignal.com/reports/2020/04/india/mobile-network-experience

  • Huo X, Dai Y, Yang T, Zhang Y, Li M, Xu X (2019) Decreased erythrocyte CD44 and CD58 expression link e-waste Pb toxicity to changes in erythrocyte immunity in preschool children. Sci Total Environ. 10:690–697. https://doi.org/10.1016/j.scitotenv

    Article  Google Scholar 

  • Iji M, Yokoyama S (1997) Recycling of printed wiring boards with mounted electronic components. Circuit World 23:10–15

    Google Scholar 

  • Ilyas S, Anwar MA, Niazi SB, Ghauri MA (2007) Bioleaching of metals from electronic scrap by moderately thermophilic acidophilic bacteria. Hydrometallurgy 88(1–4):180–188

    CAS  Google Scholar 

  • Ilyas S, Ruan CH, Bhatti HN, Ghauri MA, Anwar MA (2010) Column bioleaching of metals from electronic scrap. Hydrometallurgy 101(3–4):135–140

    CAS  Google Scholar 

  • Imran M, Haydar S, Kim J, Awan MR, Bhatti AA (2017) E-waste flows, resource recovery and improvement of legal framework in Pakistan. Resour Conserv Recycl 125:131–138

    Google Scholar 

  • Imre-Lucaci A, Nagy M, Imre-Lucaci F, Fogarasi S. Technical and environmental assessment of gold recovery from secondary streams obtained in the processing of waste printed circuit boards

  • Işıldar A, van de Vossenberg J, Rene ER, van Hullebusch ED, Lens PN (2016) Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB). Waste Manag 57:149–157. https://doi.org/10.1016/j.wasman.2015.11.033

    Article  CAS  Google Scholar 

  • Ivanus RC (2010) Bioleaching of metals from electronic scrap by pure and mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Metalurgia Int.

  • Jagannath A, Shetty KV, Saidutta MB (2017) Bioleaching of copper from electronic waste using Acinetobacter sp. Cr B2 in a pulsed plate column operated in batch and sequential batch mode. J Environ Chem Eng 5(2):1599–1607. https://doi.org/10.1016/j.jece.2017.02.023

    Article  CAS  Google Scholar 

  • Järup L, Åkesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208

    Google Scholar 

  • Jergensen GV (1999) Copper leaching, solvent extraction, and electrowinning technology. SME. https://doi.org/https://doi.org/10.1016/j.mineng.2005.05.005

  • Jing-ying L, Xiu-li X, Wen-quan L (2012) Thiourea leaching gold and silver from the printed circuit boards of waste mobile phones. Waste Manag 32(6):1209–1212

    Google Scholar 

  • Joda N, Rashchi F (2012) Recovery of ultra fine grained silver and copper from PC board scraps. Sep Purif Technol 92:36–42. https://doi.org/10.1016/j.seppur.2012.03.022

    Article  CAS  Google Scholar 

  • Kahlon SK, Sharma G, Julka JM et al (2018) Impact of heavy metals and nanoparticles on aquatic biota. Environ Chem Lett 16:919–946. https://doi.org/10.1007/s10311-018-0737-4

    Article  CAS  Google Scholar 

  • Kamberović Z, Ranitović M, Korać M, Andjić Z, Gajić N, Djokić J, Jevtić S (2018) Hydrometallurgical process for selective metals recovery from waste-printed circuit boards. Metals 8(6):441. https://doi.org/10.3390/met8060441

    Article  CAS  Google Scholar 

  • Kang H-Y, Schoenung JM (2005) Electronic waste recycling: a review of US infrastructure and technology options. Resour Conserv Recycl 45(4):368–400

    Google Scholar 

  • Kasper AC, Veit HM (2018) Gold recovery from printed circuit boards of mobile phones scraps using a leaching solution alternative to cyanide. Brazil J Chem Eng 35(03):931–942

    CAS  Google Scholar 

  • Kaya M (2016) Recovery of metals and non-metals from electronic waste by physical and chemical recycling processes. Waste Manage 57:64–90

    CAS  Google Scholar 

  • Khaliq A, Rhamdhani MA, Brooks G, Masood S (2014) Metal extraction processes for electronic waste and existing industrial routes: a review and Australian perspective. Resources 3:152–179

    Google Scholar 

  • Kim E, Kim M, Lee J, Pandey BD (2011) Selective recovery of gold from waste mobile phone PCBs by hydrometallurgical process. J Hazard Mater 198:206–215. https://doi.org/10.1016/j.jhazmat.2011.10.034

    Article  CAS  Google Scholar 

  • Krebs W, Brombacher C, Bosshard PP, Bachofen R, Brandl H (1997) Microbial recovery of metals from solids. FEMS Microbiol Rev 20:605–617

    CAS  Google Scholar 

  • Kumar A, Holuszko M, Espinosa DCR (2017) E-waste: an overview on generation, collection, legislation and recycling practices. Resour Conserv Recycl 122:32–42

    Google Scholar 

  • Kumar A, Saini HS, Kumar S (2018) Enhancement of gold and silver recovery from discarded computer printed circuit boards by Pseudomonas balearica SAE1 using response surface methodology RSM. Biotech 8:100–105

    CAS  Google Scholar 

  • Lèbre É, Corder G (2015) Integrating industrial ecology thinking into the management of mining waste. Resources 4:765–786

    Google Scholar 

  • Lehner TE HS aspects on metal recovery from electronic scrap profit from safe and clean recycling of electronics. In: IEEE international symposium on electronics and the environment, pp 318–322

  • Li J, Zeng X, Chen M, Ogunseitan OA, Stevels A (2015) Control-Alt-Delete: rebooting solutions for the e-waste problem. Environ Sci Technol 49:7095–7108

    CAS  Google Scholar 

  • Li J, Safarzadeh MS, Moats MS, Miller JD, LeVier KM, Dietrich M, Wan RY (2012) Thiocyanate hydrometallurgy for the recovery of gold. Part I: chemical and thermodynamic considerations. Hydrometallurgy 113:1–9

    Google Scholar 

  • Liang CJ, Li LY, Ma CJ (2014) Review on cyanogenic bacteria for gold recovery from E-waste. Adv Mater Res 878:355–367

    Google Scholar 

  • Liang G, Mo Y, Zhou Q (2010) Novel strategies of bioleaching metals from printed circuit boards (PCBs) in mixed cultivation of two acidophiles. Enzyme Microb Technol 47:322–326

    CAS  Google Scholar 

  • Liddicoat J, Dreisinger D (2007) Chloride leaching of chalcopyrite. Hydrometallurgy 89(3–4):323–331. https://doi.org/10.1016/j.hydromet.2007.08.004

    Article  CAS  Google Scholar 

  • Lubick N, Betts K (2008) Silver socks have cloudy lining| Court bans widely used flame retardant. Environ Sci Technol 42(11):3910

    CAS  Google Scholar 

  • Luo C, Liu C, Wang Y, Liu X, Li F, Zhang G (2011) Heavy metal contamination in soils and vegetables near an e-waste processing site, south China. J Hazard Mater 186:481–490

    CAS  Google Scholar 

  • Luyima A, Shi HL, Zhang LF (2011) Leaching studies for metals recovery from waste printed wiring boards. JOM 63(8):38–41

    CAS  Google Scholar 

  • Ma E (2019) Recovery of waste printed circuit boards through pyrometallurgy. Electron Waste Manag Treat Technol. https://doi.org/10.1016/b978-0-12-816190-6.00011-x

    Article  Google Scholar 

  • Maeda Y, Inoue H, Kawamura S, Ohike H (2000) Metal recycling at Kosaka Smelter. In: Proceedings of the 4th international symposium on recycling of metals and engineered materials, Pittsburgh, PA, USA, 22–25 October

  • Mahajan S, Gupta A, Sharma R (2017) Principles and applications of environmental biotechnology for a sustainable future. Springer, Singapore

    Google Scholar 

  • Marappa N, Ramachandran L, Dharumadurai D et al (2020) Recovery of gold and other precious metal resources from environmental polluted e-waste printed circuit board by bioleaching Frankia. Int J Environ Res 14:165–176. https://doi.org/10.1007/s41742-020-00254-5

    Article  CAS  Google Scholar 

  • Mark (2000) Plastics recovery from waste electrical & electronic equipment in non-ferrous metal processes, 8036/GB/07/00, APME (Association of Plastics Manufacturers in Europe) Report, APME

  • Marra A, Cesaro A, Rene ER, Belgiorno V, Lens PN (2018) Bioleaching of metals from WEEE shredding dust. J Environ Manage 210:180–190

    CAS  Google Scholar 

  • Matsukami H, Tue NM, Suzuki G, Someya M, Viet PH, Takahashi S (2015) Flame retardant emission from e-waste recycling operation in northern Vietnam: environmental occurrence of emerging organ phosphorus esters used as alternatives for PBDEs. Sci Total Environ 514:492–499

    CAS  Google Scholar 

  • Mishra D, Kim D, Ralph D, Ahn J, Rhee Y (2007) Bioleaching of vanadium rich spent refinery catalysts using sulfur oxidizing lithotrophs. Hydrometallurgy 88:202–209

    CAS  Google Scholar 

  • Mrazıkova A, Marcincakova R, Kadukova J, Velgosova O, Willner J, Fornalczyk A, Saternus M (2013) The effect of specific conditions on Cu, Ni, Zn and Al recovery from PCBS waste using acidophilic bacterial strains. Arch. Metall. Mater. 61(1):261–264

    Google Scholar 

  • Nachman KE, Baron PA, Raber G, Francesconi KA, Navas-Acien A, Love DC (2013) Roxarsone, inorganic arsenic, and other arsenic species in chicken: a US-based market basket sample. Environ Health Perspect 121:818–824

    Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216. https://doi.org/10.1007/s10311-010-0297-8

    Article  CAS  Google Scholar 

  • Natarajan KA (2018) Biotechnology of metals. Elsevier, Amsterdam

    Google Scholar 

  • Natarajan G, Ting YP (2014) Pre-treatment of e-waste and mutation of alkali-tolerant cyanogenic bacteria promote gold biorecovery. Biores Technol 152:80–85

    CAS  Google Scholar 

  • Natarajan G, Ting YP (2015) Gold biorecovery from e-waste: an improved strategy through spent medium leaching with pH modification. Chemosphere 136:232–238

    CAS  Google Scholar 

  • Needhidasan S, Samuel M, Chidambaram R (2014) Electronic waste – an emerging threat to the environment of urban India. J Environ Health Sci Eng 12:1–9

    Google Scholar 

  • Neto IFF, Sousa CA, Brito MSCA, Futuro AM, Soares HMVM (2016) A simple and nearly-closed cycle process for recycling copper with high purity from end life printed circuit boards. Sep Purif Technol 164:19–27

    CAS  Google Scholar 

  • Nikko L (2013) Pride in value smelter—smelt passion. Refine Future; LS-Nikko Copper Inc., Seoul

    Google Scholar 

  • Nithya R, Sivasankari C, Thirunavukkarasu A, Selvasembian R (2018) Novel adsorbent prepared from bio-hydrometallurgical leachate from waste printed circuit board used for the removal of methylene blue from aqueous solution. Microchem J 142:321–328. https://doi.org/10.1016/j.microc.2018.07.009

    Article  CAS  Google Scholar 

  • Oguchi M, Sakanakura H, Terazono A, Takigami H (2012) Fate of metals contained in waste electrical and electronic equipment in a municipal waste treatment process. Waste Manage 32:96–103

    CAS  Google Scholar 

  • Oh CJ, Lee SO, Yang HS, Ha TJ, Kim MJ (2003) Selective leaching of valuable metals from waste printed circuit boards. J Air Waste Manag Assoc 53(7):897–902. https://doi.org/10.1080/10473289.2003.10466230

    Article  CAS  Google Scholar 

  • Ongondo FO, Williams ID, Cherrett TJ (2011) ‘How are WEEE doing? A global review of the management of electrical and electronic wastes.’ Waste Manag 31:714–730

    CAS  Google Scholar 

  • Pandey B, Natarajan K (2015) Microbiology for minerals, metals, materials and the environment. CRC Press, Boca Raton

    Google Scholar 

  • Park YJ, Fray DJ (2009) Recovery of high purity precious metals from printed circuit boards. J Hazard Mater 164(2):1152–1158

    CAS  Google Scholar 

  • Petter PMH, Veit HM, Bernardes AM (2014) Evaluation of gold and silver leaching from printed circuit board of cellphones. Waste Manag 34(2):475–482. https://doi.org/10.1016/j.wasman.2013.10.032

    Article  CAS  Google Scholar 

  • Pradhan JK, Kumar S (2014) Informal e-waste recycling: environmental risk assessment of heavy metal contamination in Mandoli industrial area Delhi, India. Environ Sci Pollut Res 21:7913–7928

    CAS  Google Scholar 

  • Priya A, Hait S (2017) Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching. Environ Sci Pollut Res 28:1–20

    Google Scholar 

  • Priya J, Randhawa NS, Hait J et al (2020) High-purity copper recycled from smelter dust by sulfation roasting, water leaching and electrorefining. Environ Chem Lett. https://doi.org/10.1007/s10311-020-01047-0

    Article  Google Scholar 

  • Quinet P, Proost J, Van Lierde A (2005) Recovery of precious metals from electronic scrap by hydrometallurgical processing routes. Miner Metall Process 22:17–22. Retrieved from: https://DD8GH5YX7K.search.serialssolutions.com/?ctx_ver¼Z39.88-20

  • Rajarathinam N, Arunachalam T, Raja S, Selvasembian R (2020) Fenalan Yellow G adsorption using surface-functionalized green nanoceria: An insight into mechanism and statistical modelling. Environ Res 181:108920. https://doi.org/10.1016/j.envres.2019.108920

    Article  CAS  Google Scholar 

  • Raphulu MC, Scurrell MS (2015) Cyanide leaching of gold catalysts. Catal Commun 67:87–89. https://doi.org/10.1016/j.catcom.2015.04.011

    Article  CAS  Google Scholar 

  • Report on Global Opportunity Analysis and Industry Forecast (2013–2020) E-waste management market by types (trashed and recycled) and sources (household appliances, IT and telecommunications and consumer electronics and others) - Global Opportunity Analysis and Industry Forecast, 2013 – 2020

  • Richardson JF, Coulson JM (2002) Chemical Engineering: Particle Technology And Seraration Processes. Elsevier Engineering Information, Butterworth-Heinemann

    Google Scholar 

  • Rocchetti L, Fonti V, Veglio`, F., Beolchini, F. (2013) An environmentally friendly process for the recovery of valuable metals from spent refinery catalysts. Waste Manag Res 31(6):568–576. https://doi.org/10.1177/0734242X13476364

    Article  CAS  Google Scholar 

  • Ruan J, Zhu X, Qian Y, Hu J (2014) A new strain for recovering precious metals from waste printed circuit boards. Waste Manage 34(5):901–907. https://doi.org/10.1016/j.wasman.2014.02.014

    Article  CAS  Google Scholar 

  • Sahin M, Akcil A, Erust C, Altynbek S, Gahan CS, Tuncuk A (2015) A potential alternative for precious metal recovery from e-waste: iodine leaching. Sep Sci Technol 50(16):2587–2595

    CAS  Google Scholar 

  • Sahni A, Kumar A, Kumar S (2016) Chemo-biohydrometallurgy—a hybrid technology to recover metals from obsolete mobile SIM cards. Environ Nanotechnol Monit Manag 6:130–133. https://doi.org/10.1016/j.enmm.2016.09.00

    Article  Google Scholar 

  • Saidan M, Brown B, Valix M (2012) Leaching of electronic waste using biometabolised acids. Chin J Chem Eng 20:530–534

    CAS  Google Scholar 

  • Santonicola S, De Felice A, Cobellis L, Passariello N, Peluso A, Murru N (2017) Comparative study on the occurrence of polycyclic aromatic hydrocarbons in breast milk and infant formula and risk assessment. Chemosphere 175:383–390

    CAS  Google Scholar 

  • Seith R, Arain AL, Nambunmee K, Adar SD, Neitzel RL (2019) Self-reported health and metal body burden in an electronic waste recycling community in Northeastern Thailand. J Occup Environ Med. 61(11):905–909. https://doi.org/10.1097/JOM.0000000000001697

    Article  CAS  Google Scholar 

  • Serpe A, Rigoldi A, Marras C, Artizzu F, Mercuri ML, Deplano P (2015) Chameleon behaviour of iodine in recovering noble-metals from WEEE: Towards sustainability and “zero” waste. Green Chem 17(4):2208–2216. https://doi.org/10.1039/C4GC02237H

    Article  CAS  Google Scholar 

  • Sethurajan M, van Hullebusch ED (2019) Leaching and Selective Recovery of Cu from Printed Circuit Boards. Metals 9:1034. https://doi.org/10.3390/met9101034

    Article  CAS  Google Scholar 

  • Sheel A, Pant D (2017) Recovery of gold from electronic waste using chemical assisted microbial biosorption (hybrid) technique. Bioresour Technol 247:1189–1192

    Google Scholar 

  • Soetrisno FN, Delgado-Saborit JM (2020) Chronic exposure to heavy metals from informal e-waste recycling plants and children’s attention, executive function and academic performance. Sci Total Environ 717:137099. https://doi.org/10.1016/j.scitotenv.2020.137099

    Article  CAS  Google Scholar 

  • Song M, Luo C, Li F, Jiang L, Wang Y, Zhang D (2015) Anaerobic degradation of polychlorinated biphenyls (PCBs) and polychlorinated biphenyls ethers (PBDEs), and microbial community dynamics of electronic waste-contaminated soil. Sci Total Environ 502:426–433

    CAS  Google Scholar 

  • Song Q, Li J (2014) Environmental effects of heavy metals derived from the e-waste recycling activities in China: a systematic review. Waste Manage 34:2587–2594

    CAS  Google Scholar 

  • Sun Z, Cao H, Xiao Y, Sietsma J, Jin W, Agterhuis H (2016) Toward sustainability for recovery of critical metals from electronic waste: the hydrochemistry processes. ACS Sustain Chem Eng 5:21–40

    Google Scholar 

  • Themelis NJ, McKerrow GC, Tarassoff P et al (1972) The Noranda process. JOM 24:25–32. https://doi.org/10.1007/BF03355766

    Article  CAS  Google Scholar 

  • Theron J, Walker JA, Cloete TE (2008) Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol 34:43–69

    CAS  Google Scholar 

  • Thirunavukkarasu A, Muthukumaran K, Nithya R (2018) Adsorption of acid yellow 36 onto green nanoceria and amine functionalized green nanoceria: compssarative studies on kinetics, isotherm, thermodynamics, and diffusion analysis. J Taiwan Inst Chem Eng. https://doi.org/10.1016/j.jtice.2018.07.006

    Article  Google Scholar 

  • Thirunavukkarasu A, Nithya R, Sivashankar R (2020) A review on the role of nanomaterials in the removal of organic pollutants from wastewater. Rev Environ Sci Biotechnol. https://doi.org/10.1007/s11157-020-09548-8

    Article  Google Scholar 

  • Tiwary CS, Kishore S, Vasireddi R, Mahapatra DR, Ajayan PM, Chattopadhyay K (2017) Electronic waste recycling via cryo-milling and nanoparticle beneficiation. Mater Today 20(2):67–73. https://doi.org/10.1016/j.mattod.2017.01.015

    Article  CAS  Google Scholar 

  • Tripathi A, Kumar M, Sau DC, Agrawal A, Chakravarty S, Mankhand TR (2012) Leaching of gold from the waste mobile phone printed circuit boards (PCBs) with ammonium thiosulphate. Int J Metall Eng 1(2):17–21

    Google Scholar 

  • Ubaldini S, Veglio F, Fornari P, Abbruzzese C (2000) Process flow-sheet for gold and antimony recovery from stibnite. Hydrometallurgy 57(3):187–199

    CAS  Google Scholar 

  • Vakilchap F, Mousavi SM, Shojaosadati SA (2016) Role of Aspergillus niger in recovery enhancement of valuable metals from produced red mud in Bayer process. Biores Technol 218:991–998. https://doi.org/10.1016/j.biortech.2016.07.059

    Article  CAS  Google Scholar 

  • Valix M (2017) Current developments in biotechnology and bioengineering. Elsevier, Nertherlands

    Google Scholar 

  • Van Eygen E, De Meester S, Tran HP, Dewulf J (2016) Resource savings by urban mining: the case of desktop and laptop computers in Belgium. Resour Conserv Recycl 107:53–64

    Google Scholar 

  • Velgosová O, Kaduková J, Marcinčáková R, Mražíková A, Fröhlich L (2014) The role of main leaching agents responsible for Ni bioleaching from spent Ni-Cd batteries. Sep Sci Technol 49(3):438–444

    Google Scholar 

  • Velgosová O, Kaduková J, Marcinčáková R, Mražíková A, Fröhlich L (2013) Influence of H2SO4 and ferric iron on Cd bioleaching from spent Ni–Cd batteries. Waste Manag 33:456–461

    Google Scholar 

  • Wang J, Bai J, Xu J, Liang B (2009) Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture. J Hazard Mater 172:1100–1105

    CAS  Google Scholar 

  • Wang J, Xu Z (2015) Disposing and recycling waste printed circuit boards: disconnecting, resource recovery, and pollution control. Environ Sci Technol 49:721–733

    CAS  Google Scholar 

  • Wang S, Zheng Y, Yan W, Chen L, Dummi Mahadevan G, Zhao F (2016) Enhanced bioleaching efficiency of metals from E-wastes driven by biochar. J Hazard Mater 320:393–400. https://doi.org/10.1016/j.jhazmat.2016.08.054

    Article  CAS  Google Scholar 

  • Widmer R, Krapf HO, Khetriwal DS, Schnellmann M, Boni H (2005) Global perspectives on e-waste. Environ Impact Assess Rev 25:436–458

    Google Scholar 

  • Wittsiepe J, Fobil JN, Till H, Burchard GD, Wilhelm M, Feldt T (2015) Levels of polychlorinated dibenzo-p-dioxins, dibenzofurans (PCDD/Fs) and biphenyls (PCBs) in blood of informal e-waste recycling workers from Agbogbloshie Ghana, and controls. Environ Int 79:65–73

    CAS  Google Scholar 

  • Xia M-C, Wang Y-P, Peng T-J, Shen L, Yu R-L, Liu Y-D, Zeng W-M (2017) Recycling of metals from pretreated waste printed circuit boards effectively in stirred tank reactor by a moderately thermophilic culture. J Biosci Bioeng 123(6):714–721. https://doi.org/10.1016/j.jbiosc.2016.12.017

    Article  CAS  Google Scholar 

  • Xiu FR, Qi Y, Zhang FS (2015) Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment. Waste Manage 41:134–141

    CAS  Google Scholar 

  • Xu L, Huo X, Liu Y, Zhang Y, Qin Q, Xu X (2020) Hearing loss risk and DNA methylation signatures in preschool children following lead and cadmium exposure from an electronic waste recycling area. Chemosphere 246:125829

    CAS  Google Scholar 

  • Xu Q, Chen DH, Huang MH (2009) Iodine leaching process for recovery of gold from waste PCB. Chinese J Environ Eng 5:911–914

    Google Scholar 

  • Yang T, Xu Z, Wen J, Yang L (2009) Factors influencing bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans. Hydrometallurgy 97(1–2):29–32sss

    CAS  Google Scholar 

  • Yang Q, Qiu X, Li R, Liu S, Li K, Wang F (2013) Exposure to typical persistent organic pollutants from an electronic waste recycling site in Northern China. Chemosphere 91:205–211

    CAS  Google Scholar 

  • Yazici E, Deveci H (2014) Ferric sulphate leaching of metals from waste printed circuit boards. Int J Miner Process 133:39–45

    CAS  Google Scholar 

  • Yazici EY, Deveci H (2013) Extraction of metals from waste printed circuit boards (WPCBs) in H2SO4–CuSO4–NaCl solutions. Hydrometallurgy 139:30–38. https://doi.org/10.1016/j.hydromet.2013.06.018

    Article  CAS  Google Scholar 

  • Zhang C, Zhang F (2018) High copper recovery from scrap printed circuit boards using poly(ethylene glycol)/sodium hydroxide treatment. Environ Chem Lett 16:311–317. https://doi.org/10.1007/s10311-017-0676-5

    Article  CAS  Google Scholar 

  • Zhang Z, Zhang F-S (2013) Synthesis of cuprous chloride and simultaneous recovery of Ag and Pd from waste printed circuit boards. J Hazard Mater 261:398–404. https://doi.org/10.1016/j.jhazmat.2013.07.057

    Article  CAS  Google Scholar 

  • Zhang Z, Zhang FS (2014) Selective recovery of palladium from waste printed circuit boards by a novel non-acid process. J Hazard Mater 279(1):46–51

    CAS  Google Scholar 

  • Zheng L, Wu K, Li Y, Qi Z, Han D, Zhang B (2008) Blood lead and cadmium levels and relevant factors among children from an e-waste recycling town in China. Environ Res 108:15–20

    CAS  Google Scholar 

  • Zhu P, Gu GB (2002) Recovery of gold and copper from waste printed circuits. Chinese J Rare Metals 26(3):214–216

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajarathinam Nithya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nithya, R., Sivasankari, C. & Thirunavukkarasu, A. Electronic waste generation, regulation and metal recovery: a review. Environ Chem Lett 19, 1347–1368 (2021). https://doi.org/10.1007/s10311-020-01111-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-020-01111-9

Keywords

Navigation