Skip to main content
Log in

Thermochronology of the Angara–Vitim Granitoid Batholith, Transbaikalia, Russia

  • GEOCHEMISTRY
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

We reconstructed the history of the Angara–Vitim batholith (AVB), characterized by the formation of huge volumes of granitic magma using thermochronological analysis (40Ar/39Ar, U/Pb) and math testing selected age milestones on the basis of the model crystallization differentiation and dynamics of heat and mass transfer in a magmatic chamber. The consolidation time of the granite melt is estimated to be in the range of 320–290 Ma. Events with age are distinguished based on the presence of isotope dating clusters T1 = 245 ± 1 Ma; T2 = 212 ± 1 Ma; T3 = 156 ± 1 Ma; T4 = 125 ± 2 Ma. The thermal history of samples corresponding to the modern erosion level immediately imposes strict restrictions on the history of consolidation and cooling for rocks corresponding to the deep (>20 km) levels of the magmatic chamber. Calculations show that the lifetime of the residual melt at the deep levels of the magmatic chamber of the AVB can reach 100 Ma. Events with age 245 ± 1, 212 ± 1, 156 ± 1, 125 ± 2 Ma reflect the gradual transformation of the “semi-frozen granite layer” and the discrete nature of its tectonic exposure to the upper level of the Earth’s crust under the influence of tangential elastic deformations caused by the pulsating manifestation of intraplate mantle magmatism within the Siberian platform and its folded frame. The final stage of AVB tectonic exposure to the Earth’s surface (as a solid body) occurred from 60 Ma to the present time, reflecting the process of origin and development of the Baikal rift system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. T. V. Donskaya, D. P. Gladkochub, A. M. Mazukabzov, et al., J. Asian Earth Sci. 62, 79–97 (2013).

    Article  Google Scholar 

  2. A. A. Tsygankov, G. N. Burmakina, V. B. Khubanov, et al., Russ. Petrol. 25 (4), 395–418 (2017).

    Google Scholar 

  3. E. Kh. Turutanov, Dokl. Earth Sci. 440 (2), 1464–1467 (2011).

    Article  Google Scholar 

  4. A. V. Travin, Russ. Geol. Geophys. 57 (11), 2015–2033 (2016).

    Article  Google Scholar 

  5. T. V. Donskaya, D. P. Gladkochub, A. M. Mazukabzov, T. Wang, L. Guo, N. V. Rodionov, and E. I. De-monterova, Russ. Geol. Geophys. 57 (11), 2015–2033 (2016).

    Article  Google Scholar 

  6. M. Jolivet, T. De Boisgrollier, C. Petit, et al., Tectonics 28, TC3008 (2009).

    Article  Google Scholar 

  7. B. M. Jahn, B. A. Litvinovsky, A. N. Zanvilevich, et al., Lithos 113, 521–539 (2009).

    Article  Google Scholar 

  8. V. E. Khain, S. A. Tychkov, and A. G. Vladimirov, Russ. Geol. Geophys. 37 (1), 3–13 (1996).

    Google Scholar 

  9. V. V. Yarmolyuk, S. V. Budnikov, V. I. Kovalenko, et al., Petrology 5 (5), 401–415 (1997).

    Google Scholar 

  10. J. A. Stimac, F. Goff, and K. Wohletz, Geothermics 30 (2-3), 349–390 (2001).

    Article  Google Scholar 

  11. N. G. Murzintsev, I. Yu. Annikova, A. V. Travin, et al., Geodyn. Tectonophys. 10 (2) (2019).

  12. V. P. Trubitsyn and M. N. Evseev, Izv., Phys. Solid Earth 54 (6), 838–849 (2018);

    Article  Google Scholar 

  13. M. K. Reichow, M.  S.  Pringle, A. I. Al’Mukhamedov, et al., Earth Planet. Sci. Lett. 277, 9–20 (2009).

    Article  Google Scholar 

  14. M. I. Kuzmin, V. V. Yarmolyuk, and V. A. Kravchinsky, Earth-Sci. Rev. 102, 29–59 (2010).

    Article  Google Scholar 

  15. A. I. Almukhamedov, A. Ya. Medvedev, and V. V. Zolotukhin, Petrology 12 (4), 297–312 (2004).

    Google Scholar 

  16. M. K. Reichow, M. S. Pringle, A. I. Al’Mukhamedov, et al., Earth Planet. Sci. Lett. 277, 9–20 (2009).

    Article  Google Scholar 

Download references

Funding

The study was carried out under support of the Ministry of Science and Education of the Russian Federation, project 5.1688.2017/PCh (expedition work and 40Ar/39Ar isotope dating), projects nos. 14.Y26.31.0012 and 14.Y26.31.0018 (geodynamic analysis), and supported by the Russian Foundation for Basic Research no. 17-05-00936 (thermochronological reconstructions and mathematical modeling), nos. 17-05-00275 and 20-05-00344 (regional geological survey, U/Pb dating).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Travin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Travin, A.V., Vladimirov, A.G., Tsygankov, A.A. et al. Thermochronology of the Angara–Vitim Granitoid Batholith, Transbaikalia, Russia. Dokl. Earth Sc. 494, 707–712 (2020). https://doi.org/10.1134/S1028334X20090196

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028334X20090196

Keywords:

Navigation