Skip to main content
Log in

Zoological Indication of Climate Change in the Central Kazakh Steppe Compared to the Middle of the 20th Century Using the Example of Carabid and Tenebrionid Beetles

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

Studies of communities of ground beetles (Carabidae) and black beetles (Tenebrionidae) were conducted in central Kazakhstan along 70° E in typical, dry, and desert steppe subzones in 1976–1978 and 2018. Parallel to that, soil-cover studies were conducted and the climate indicators of the studied areas were compared. Despite a considerable change in climate over 50 years, which has been expressed in a rise in temperatures with a simultaneous increase in precipitation, the basic features of soils have not undergone essential changes, but they keep or get strong potentials for solonetz and solonchak elementary soil processes, which are capable of drastically changing the structure of the soil cover. The generality of local fauna of carabids in 1976–1978 was 48–62% and, at the beginning of 21st century, it decreased to 16% in dry steppe and to 7% in desert steppe. In tenebrionids, which are more adapted to aridity, the faunal similarity decreased from 70–75 to 37% in the typical steppe and increased to 87% in the dry steppe. There are more “southern” subarid species in the communities and fewer relatively “northern” boreal and polyzonal species, which disappear completely in dry and desert steppes. The Tencar index that expresses the ratio of the number of individuals and species of arid tenebrionids and more humic carabids is used as an integral zoo indicator of changes in aridity of the environment. In the typical steppe, the index values are low and change little in the long-term dynamics and along the catena. However, in the dry steppe, Tencar index values increased 5 times in 2018 when compared to the middle of the 20th century and in desert steppe they grew by two orders of magnitude. The trigger for changes in the composition and structure of local communities of carabids and tenebrionids is not a change in atmospheric humidity, but a rise in average annual temperatures, which exceeded the global trend values and activated the salinization of soils, creating the conditions for the desertification of the territory and biota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Aleksandrowicz, O., Recent records of steppe species in Belarus, first indications of a steppe species invasion? Zookeys, 2011, vol. 100, pp. 475–485. https://doi.org/10.3897/zookeys.100.1541

    Article  Google Scholar 

  2. Ashworth, A.C., Perspectives on Quaternary beetles and climate change, in Geological Perspectives of Global Climate Change, Am. Assoc. Petrol. Geol. Stud. Geol. Ser. no. 47, Gerhard, L.C., Harrison, W.E., and Hanson, B.M., Eds., Tulsa, 2001, chap. 8, pp. 153–168.

  3. Babin-Fenske, J., Anand, M., and Alarie, Y., Rapid morphological change in stream beetle museum specimens correlates with climate change, Ecol. Entomol., 2008, vol. 33, no. 5, pp. 646–651. https://doi.org/10.1111/j.1365-2311.2008.01018.x

    Article  Google Scholar 

  4. Beresneva, I.A., Climates of arid zone in Asia, in Trudy Sovmestnoi Rossiisko-Mongol’skoi kompleksnoi biologicheskoi ekspeditsii (Transactions of Join Russian-Mongolian Complex Biological Expedition), Moscow: Nauka, 2006, vol. 46.

  5. Bespalov, A.N., Dudko, R.Yu., and Lyubechanskii, I.I., Additions to the ground beetle fauna (Coleoptera, Carabidae) of the Novosibirsk oblast: do the southern species spread to the north? Evrasiatskii Entomol. Zh., 2010, vol. 9, no. 4, pp. 625–628.

    Google Scholar 

  6. Bondarenko, A.S. and Zamotailov, A.S., Long-term changes in seasonal dynamics of activity of some species of ground beetles (Coleoptera, Carabidae) in mountain part of Northwestern Caucasus, Tr. Russ. Entomol.O-va, 2013, vol. 84, no. 1, pp. 110–115.

    Google Scholar 

  7. Borovskii, V.M., Erosion and deflation of soils, in Eroziya pochv v Kazakhstane i bor’ba s nei (Soil Erosion in Kazakhstan and Its Prevention), Alma-Ata: Nauka, 1970, pp. 24–40.

  8. Borovskii, V.M., Geokhimiya zasolennykh pochv Kazakhstana (Geochemistry of Saline Soils of Kazakhstan), Moscow: Nauka, 1978.

  9. Borovskii, V.M., Formirovanie zasolennykh pochv i galokhimicheskie provintsii Kazakhstana (Development of Saline Soils and Halogeochemical Provinces of Kazakhstan), Alma-Ata: Nauka, 1982.

  10. Borovskii, V.M., Mikhailichenko, V.N., and Sharoshkina, N.B., The materials for study of solonchaks of North Caucasus, in Genezis pochv perspektivnykh raionov osvoenya Kazakhstana (Genesis of Soils in Kazakhstan Regions Prospective for Exploration), Alma-Ata, 1969, pp. 186–214.

  11. Brandmayr, P. and Pizzolotto, R., Climate change and its impact on epigean and hypogean carabid beetles, Period. Biol., 2016, vol. 118, no. 3, pp. 147–162. https://doi.org/10.18054/pb.2016.118.3.4062

    Article  Google Scholar 

  12. Brooks, D.R., Bater, J.E., Clark, S.J., Monteith, D.T., Andrews, C., Corbett, S.J., Beaumont, D.A., and Chapman, J.W., Large carabid beetle declines in a United Kingdom monitoring network increases evidence for a widespread loss in insect biodiversity, J. Appl. Ecol., 2012, vol. 49, pp. 1009–1019. https://doi.org/10.1111/j.1365-2664.2012.02194.x

    Article  Google Scholar 

  13. Budanov, N.U., Degradation of land resources of Kazakhstan, Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii “Geografiya i geoekologiya: problemy nauki, praktiki i obrazovaniya” (Proc. Int. Sci.-Pract. Conf. “Geography and Geoecology: Science, Practice, and Education”), Moscow, 2016, pp. 31–36.

  14. Budyko, M.I., Klimat v proshlom i budushchem (Climate in Past and Future), Leningrad: Gidrometeoizdat, 1980.

  15. Budyko, M.I., Efimova, I.A., and Lugina, A.M., Modern climate warming, Meteorol. Gidrol., 1993, no. 7, pp. 29–34.

  16. Butterfield, J., Carabid life-cycle strategies and climate change: a study on an altitude transect, Ecol. Entomol., 1996, vol. 21, no. 1, pp. 9–16. https://doi.org/10.1111/j.1365-2311.1996.tb00260.x

    Article  Google Scholar 

  17. Bykov, B.A., Ekologicheskii slovar’ (Ecological Dictionary), Alma-Ata: Nauka, 1983.

  18. Chen, I.-C., Hill, J.K., Ohlemüller, R., Roy, D.B., and Thomas, C.D., Rapid range shifts of species associated with high levels of climate warming, Science, 2011, vol. 333, no. 6045, pp. 1024–1026. https://doi.org/10.1126/science.1206432

    Article  CAS  PubMed  Google Scholar 

  19. Clavel, J., Julliard, R., and Devictor, V., Worldwide decline of specialist species: toward a global functional homogenization? Front. Ecol. Environ., 2011, vol. 9, no. 4, pp. 222–228. https://doi.org/10.1890/080216

    Article  Google Scholar 

  20. Desender, K., Dekoninck, W., Dufrêne, M., and Maes, D., Changes in the distribution of carabid beetles in Belgium revisited: Have we halted the diversity loss? Biol. Conserv., 2010, vol. 143, no. 6, pp. 1549–1557. https://doi.org/10.1016/j.biocon.2010.03.039

    Article  Google Scholar 

  21. Drees, C., Brandmayr, P., Buse, J., Dieker, P., Gürlich, S., Habel, J., Harry, I., Härdtle, W., Matern, A., Meyer, H., Pizzolotto, R., Quante, M., Schäfer, K., Schuldt, A., Taboada, A., and Assmann, T., Poleward range expansion without a southern contraction in the ground beetle Agonum viridicupreum (Coleoptera, Carabidae), Zookeys, 2011, vol. 100, pp. 333–352. https://doi.org/10.3897/zookeys.100.1535

    Article  Google Scholar 

  22. Dudko, R.Yu. and Lyubechanskii, I.I., Fauna and zoogeographical characteristic of ground beetles (Coleoptera, Carabidae) in Novosibirsk oblast, Evraziatskii Entomol. Zh., 2002, vol. 1, no. 1, pp. 30–45.

    Google Scholar 

  23. Dudko, R.Yu., Bespalov, A.N., Zinov’ev, E.V., and Lyubechanskii, I.I., Changes to the ground beetle (Coleoptera, Carabidae) fauna of the Novosibirskaya oblast in recent decade, Evraziatskii Entomol. Zh., 2018, vol. 17, no. 4, pp. 293–300. https://doi.org/10.15298/euroasentj.17.4.10

    Article  Google Scholar 

  24. Durasov, A.M. Tazabekov, T.T., Pochvy Kazakhstana (Soils of Kazakhstan), Alma-Ata: Kainar, 1981.

  25. Gilyarov, M.S., Zoologicheskii metod diagnostiki pochv (Zoological Diagnostics of Soils), Moscow: Nauka, 1965.

  26. Glazovskaya, M.A. and Gennadiev, A.N., Geografiya pochv s osnovami pochvovedeniya (Soil Geography with Principles of Soil Science), Moscow: Mosk. Gos. Univ., 1995.

  27. Global changes of environment and climate, in Izbrannye nauchnye trudy po probleme “Global’naya evolyutsiya biosfery. Antropogennyi vklad” (Selected Scientific Works on the Problem “Global Evolution of Biosphere. Anthropogenic Input”), Zavarzin, G.A., Ed., Moscow, 1999.

    Google Scholar 

  28. Gobbi, M., Rossaro, B., Vater, A., De Bernardi, F., Pelfini, M., and Brandmayr, P., Environmental features influencing carabid beetle (Coleoptera) assemblages along a recently deglaciated area in the Alpine region, Ecol. Entomol., 2007, vol. 32, no. 6, pp. 682–689. https://doi.org/10.1111/j.1365-2311.2007.00912.x

    Article  Google Scholar 

  29. Hanski, I., The Shrinking World: Ecological Consequences of Habitat Loss, Oldendorf: Int. Ecol. Inst., 2005.

  30. Hickling, R., Roy, D.B., Hill, J.K., Fox, R., and Thomas, C.D., The distributions of a wide range of taxonomic groups are expanding polewards, Global Change Biol., 2006, vol. 12, no. 3, pp. 450–455. https://doi.org/10.1111/j.1365-2486.2006.01116.x

    Article  Google Scholar 

  31. Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Xiaosu, D., Maskell, K., and Johnson, C.A., Climate Change 2001: The Scientific Basis, Cambridge: Cambridge Univ. Press, 2001.

    Google Scholar 

  32. Kirikov, S.V., Izmeneniya zhivotnogo mira v prirodnykh zonakh SSSR (XIII–XIX vv.): Stepnaya zona i lesostep’ (Changes of Fauna in Natural Zones of USSR (13th–19th Centuries): Steppe and Forest-Steppe Zones), Moscow: Akad. Nauk SSSR, 1959.

  33. Kiryushin, V.I., Solontsy i ikh melioratsiya (Solonchaks and Their Melioration), Alma-Ata: Kainar, 1975.

  34. Klassifikatsiya i diagnostika pochv SSSR (Classification and Diagnostics of Soils of USSR), Moscow: Kolos, 1977.

  35. Koivula, M.J., Useful model organisms, indicators, or both? Ground beetles (Coleoptera, Carabidae) reflecting environmental conditions, Zookeys, 2011, vol. 100, pp. 287–317. https://doi.org/10.3897/zookeys.100.1533

    Article  Google Scholar 

  36. Markuzzi, G., Rapport truequilibrio indrico e ambiente nei colo pteri tenebrionidi, Arch. Zool. Ital., 1960, vol. 45, p. 325–342.

    Google Scholar 

  37. Medvedev, G.S., Types of mouth apparatus of Darkling beetles (Tenebrionidae) of Turkmenistan, Zool. Zh., 1959, vol. 38, no. 8, p. 1214.

    Google Scholar 

  38. Mordkovich, V.G., Zoologicheskaya diagnostika pochv lesostepnoi i stepnoi zon Sibiri (Zoological Diagnostics of Soils of Forest-Steppe and Steppe Zones of Siberia), Novosibirsk: Nauka, 1977.

  39. Mordkovich, V.G., Ecological groups of ground beetle species (Coleoptera, Tenebrionidae) in West Siberia and Central Kazakhstan plains, Evraziatskii Entomol. Zh., 2011, vol. 10, no. 4, pp. 409–414.

    Google Scholar 

  40. Mordkovich, V.G., Stepnye ekosistemy (Steppe Ecosystems), Novosibirsk: Geo, 2014.

    Google Scholar 

  41. Mordkovich, V.G. and Lyubechanskii, I.I., Ecological groups of ground beetle species (Coleoptera, Carabidae): characteristics, principles of isolation, composition, and demand for environmental research, Evraziatskii Entomol. Zh., 2010, vol. 9, no. 2, pp. 195–202.

    Google Scholar 

  42. Mordkovich, V.G., Shatokhina, N.G., and Titlyanova, A.A., Stepnye kateny (Steppe Catenas), Novosibirsk: Nauka, 1985.

  43. Moret, P., de los Ángeles Aráuz, M., Gobbi, M., and Barragán, Á., Climate warming effects in the tropical Andes: first evidence for upslope shifts of Carabidae (Coleoptera) in Ecuador, Insect Conserv. Diversity, 2016, vol. 9, no. 4, pp. 342–350. https://doi.org/10.1111/icad.12173

    Article  Google Scholar 

  44. Nabozhenko, M.V. and Lebedeva, N.V., The taxocene of lichen-feeding darkling beetles (Coleoptera, Tenebrionidae: Helopini) in a forest-steppe ecotone, Entomol. Rev., 2016. Vol. 96, no. 1, pp. 101–113. https://doi.org/10.1134/S0013873816010115

    Article  Google Scholar 

  45. Nasiev, B.N., Agrochemical parameters of soil degradation of fodder field in semidesert zone of West Kazakhstan region, Agrokhimiya, 2015, no. 9, pp. 20–26.

  46. Nasiev, B.N. and Eleshev, R., Modern state of the soils of flood irrigation systems in the semidesert zone, Eurasian Soil Sci., 2014, vol. 47, no. 6, pp. 613–620.

    Article  Google Scholar 

  47. Nustruev, S.S., Genezis i geografiya pochv (Genesis and Geography of Soils), Moscow: Nauka, 1977.

  48. Ostrovskii, A.M., Global climate change and dynamics of biodiversity of fauna in the southeast of Belarus, Probl. Ekol. Monit. Model. Ekosist., 2017, vol. 28, no. 5, pp. 70–86.

    Google Scholar 

  49. Otsenochnyi doklad ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiiskoi Federatsii. Toma 1–2. Obshchee rezyume (Assessment Report on Climate Change and Its Consequences in Russian Federation, Vols. 1–2: General), Moscow: Rosgidromet, 2008.

  50. Pashkov, S.V., Ecological-economic aspects of steppe land farming in North Kazakhstan region, Cand. Sci. (Geogr.) Dissertation, Petropavlovsk, 2006.

  51. Pizzolotto, R., Gobbi, M., and Brandmayr, P., Changes in ground beetle assemblages above and below the treeline of the Dolomites after almost 30 years (1980/2009), Ecol. Evol., 2014, vol. 4, no. 8, pp. 1284–1294. https://doi.org/10.1002/ece3.927

    Article  PubMed  PubMed Central  Google Scholar 

  52. Pochvennyi otchet territorii Vsesoyuznogo Nauchno-issledovatel’skogo institute zernovogo khozyaistva Shortandinskogo raiona, Tselinogradskoi oblasti (Soil Report of the Territory of the All-Union Scientific Research Institute of Grain Economy, Shortandy District, Tselinograd Region), Shortandy, 1960.

  53. Pozsgai, G. and Littlewood, N.A., Changes in the phenology of the ground beetle Pterostichus madidus (Fabricius, 1775), Insect Sci., 2011, vol. 18, no. 4, pp. 462–472. https://doi.org/10.1111/j.1744-7917.2011.01416.x

    Article  Google Scholar 

  54. Pozsgai, G. and Littlewood, N.A., Ground beetle (Coleoptera: Carabidae) population declines and phenological changes: Is there a connection? Ecol. Indic., 2014, vol. 41, pp. 15–24. https://doi.org/10.1016/j.ecolind.2014.01.029

    Article  Google Scholar 

  55. Prirodnye usloviya i estestvennye resursy SSSR. Tom 7. Kazakhstan (Natural Conditions and Resources of USSR, Vol. 7: Kazakhstan), Moscow: Nauka, 1969.

  56. Putevoditel’ pochvennoi ekskursii 10-oi Mezhdunarodnogo kongressa pochvovedov (Guide of Soil Excursions of the Tenth International Congress of Soil Scientists), Moscow: Nauka, 1974.

  57. Rainio, J. and Niemela, J., Ground beetles (Coleoptera: Carabidae) as bioindicators, Biodiversity Conserv., 2003, vol. 12, pp. 487–506.

    Article  Google Scholar 

  58. Saparov, A.S. and Mamyshov, M.M., Ecological problems of soil cover of Kazakhstan Republic, Probl. Egrokhim. Ekol., 2008, no. 3, pp. 23–26.

  59. Saparov, A.S., Sharypova, T.M., and Saparov, G.A., Ecology of soils of Kazakhstan: problems and their solution, Materialy II Mezhdunarodnoi shkoly molodykh uchenykh “Tyazhelye metally v okruzhayushchei srede” (Proc. II Int. School of Young Scientists “Heavy Metals in Environment”), Novosibirsk: Novosib. Gos. Agrar. Univ., 2017, pp. 11–17.

  60. Seidalina, K.Kh., Modern fertility of chernozems in Northern Kazakhstan, Cand. Sci. (Biol.) Dissertation, Tyumen, 2009.

  61. Sergeeva, E.V., First find of Melanimon tibialis (Fabricius, 1781) (Coleoptera: Tenebrionidae: Melanimini) in Tyumen oblast, Eversmannia, 2014, no. 40, p. 62.

  62. Sharova, I.Kh., Zhiznennye formy zhuzhelits (Coleoptera, Carabidae) (Life Forms of Ground Beetles (Coleoptera, Carabidae)), Moscow: Nauka, 1981.

  63. Spravochnik po klimatu SSSR. Vyp. 18. Kazakhskaya SSR. Chast’ 2. Temperatura vozdukha i pochvy (Handbook on Climate of USSR, No. 18: Kazakh SSR, Part 2: Temperature of Air and Soil), Leningrad: Gidrometeoizdat, 1966.

  64. Stebaev, I.V. and Kolpakov, V.E., The role of ecomorphs in soil-zoological studies and the first attempt of their classification, Zool. Zh., 2003, vol. 82, no. 2, pp. 224–228.

    Google Scholar 

  65. Storozhenko, D.M., Pochvy melkosopochnika Tsentral’nogo Kazakhstana (Soils of the Hummocks of Central Kazakhstan), Alma-Ata: Akad. Nauk KazSSR, 1952.

  66. Thomas, C.D., Climate, climate change and range boundaries, Diversity Distrib., 2010, vol. 16, no. 3, pp. 488–495. https://doi.org/10.1111/j.1472-4642.2010.00642.x

    Article  Google Scholar 

  67. Tishkov, A.A., Global climate changes and degradation of steppe ecosystems, Arid. Ekosist., 1996, no. 2, pp. 30–38.

  68. Titlyanova, A.A., Kiryushin, V.I., Okhin’ko, I.P., Andrievskii, V.S., Afanas’ev, N.A., Bykadorova, L.V., Gantimurova, N.I., Klevenskaya, I.L., Lebedeva, I.N., Linnik, V.G., Mordkovich, V.G., Mordkovich, G.D., Naumov, A.V., Revenskii, L.E., Tikhomirova, N.A., et al., Agrotsenozy stepnoi zony (Steppe Agrocenosises), Novosibirsk: Nauka, 1984.

  69. Tseng, M., Kaur, K.M., Pari, S.S., Sarai, K., Chan, D., Yao, C.H., Porto, P., Toor, A., Toor, H.S., and Fograscher, K., Decreases in beetle body size linked to climate change and warming temperatures, J. Anim. Ecol., 2018, vol. 87, pp. 647–659. https://doi.org/10.1111/1365-2656.12789

    Article  PubMed  Google Scholar 

  70. Turin, H. and den Boer, P.J., Changes in the distribution of carabid beetles in The Netherlands since 1880. II. Isolation of habitats and long-term time trends in the occurrence of carabid species with different powers of dispersal (Coleoptera, Carabidae), Biol. Conserv., 1988, vol. 44, no. 3, pp. 179–200.

    Article  Google Scholar 

  71. Uspanov, U.U., Yuzhnye chernozemy Severnogo Kazakhstana (Southern Chernozems of Northern Kazakhstan), Alma-Ata: Nauka, 1974.

  72. Voigt, W., Perner, J., Davis, A.J., Eggers, T., Schumacher, J., Bährmann, R., Fabian, B., Heinrich, W., Köhler, G., Lichter, D., Marstaller, R., and Sander, F.W., Trophic levels are differentially sensitive to climate, Ecology, 2003, vol. 84, no. 9, pp. 2444–2453. https://doi.org/10.1890/02-0266

    Article  Google Scholar 

  73. Voprosy melioratsii i geografii pochv Kazakhstana (Melioration and Geography of Soils of Kazakhstan), Uspanov, U.U., Ed., Alma-Ata, 1963.

    Google Scholar 

  74. Zamotailov, A.S., Khomitskii, E.E., and Belyi, A.I., Characteristic of complex of ground beetles (Coleoptera, Carabidae) from agrolandscapes of the central zone of Krasnodar krai in the beginning of 21st century. 2. Long-term transformation of the structure and bioecological parameters, Tr. Kuban. Gos. Agrar. Univ., 2015, no. 1 (52), pp. 103–113.

  75. Zherikhin, V.V., Nature and history of herbaceous biomes, in Stepi Evrazii: problemy sokhraneniya i vosstanovleniya (Steppes of Eurasia: Conservation and Recovery), St. Petersburg: Bot. Inst., Ross. Akad. Nauk, 1993, pp. 29–49.

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 18-04-00820a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Lyubechanskii.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by L. A. Solovyova

Appendices

Appendix 1.

Soil sections in the zonal series of steppe soils of central Kazakhstan, which were observed in 2018

Catena position

Coordinates

Soil

Horizons, cm

Description

Kazakhstan, Akmola Region, environs of the settlement of Shortandy. Virgin steppe site

EL

51.56608° N 71.28065° E

Southern carbonate deeply solonetzic medium-thick chernozem

Adk (0–12)

Light loamy, dry, dark gray, powdery, intertwined with roots of steppe vegetation, loose, soil effervesces from HCl

   

Ak (12–43)

Light loamy, fresh, dark gray, slightly lumpy, loose, soil effervesces from HCl

   

AVk (43–76)

Light loamy, fresh, gray-brown, tongue-shaped humus streaks on a brown background, compacted, lumpy–nutty prismatic, slightly sticky, soil effervesces from HCl

   

Vk (76–103)

Light loamy, fresh, yellowish brown with gray spots of humus, prismatic, dense, soil effervesces from HCl

   

Sks (103–…)

Light loamy, fresh, brownish with a whitish tint, structureless, less dense than horizon B, gypsum in the form of small grains, soil effervesces from HCl

TR1

51.56540° N 71.28464° E

Meadow chernozem solonetzic soil

Ad (0–9)

Light loamy, dry, dark gray, powdery, intertwined with roots of steppe vegetation, loose, soil does not effervesce from HCl

   

Ak (9–37)

Light loamy, fresh, dark gray, lumpy–nutty, compacted, abundant with plant roots, soil effervesces from HCl

   

AVk (37–74)

Light loamy, fresh, uneven grayish brown color due to tongue-shaped humus streaks on a yellowish brown background, lumpy–nutty, carbonate structures in the form of veins along the pores and root passages, compacted, soil effervesces from HCl

   

Vk (74–102)

Light loamy, fresh, yellowish brown, prismatic, small dark spots of approximately 0.5–1 mm in size (possibly manganese structures), compacted, soil effervesces from HCl

   

Sks (102–…)

Light loamy, fresh, brownish with a whitish tint, gypsum in the form of grains, loose, structureless, soil effervesces from HCl

TR2

51.56681° N 71.29067° E

Deeply carbonate solonetz

Adk (0–7)

Medium loamy, dry, light gray, powdery, loose, intertwined with roots of steppe vegetation, soil effervesces from HCl

   

Ak (7–30)

Medium loamy, fresh, spotty brownish gray, slightly lumpy powdery, slightly compacted, rich in carbonates in the form of lines and tubes along root passages, soil effervesces from HCl

   

V1k (30–54)

Heavy loamy, fresh, grayish brown, richly colored with humus, nutty–prismatic, abundant with carbonates in the form of lines and tubes along the passages of plant roots, sticky, compacted, soil effervesces from HCl

   

V2k (54–77)

Heavy loamy, moist, yellowish brown with humic streaks, sticky, lumpy–prismatic, abundant with carbonates in the form of lines and tubes along the passages of plant roots, compacted, soil effervesces from HCl

Catena position

Coordinates

Soil

Horizons, cm

Description

   

Vks (77–95)

Heavy loamy, moist, light brown, prismatic, spots of gypsum, spots of humus are found along the facets of individual structures, stickiness is barely noticeable, carbonates in the form of impregnation, compacted, soil effervesces from HCl

AC

51.56628° N 71.29117° E

Alluvial meadow-marshy soil

Adg (0–21)

A lot of undecomposed organic matter (approximately 40–50%), the mineral part is light loamy, very loose, moist, black with a brown tint and bluish tint, the structure of the mineral part is lumpy, soil does not effervesce from HCl

   

Ag (21–79)

Light loamy, very loose, black with a bluish tint, wet, loosely lumpy, abundant with plant roots, bright brown spots, soil does not effervesce from HCl

   

Bg (79–…)

Medium loamy, wet, lumpy grainy, black with a brownish tint, slightly compacted, soil does not effervesce from HCl

Kazakhstan, Akmola Region, environs of the settlement of Arykty. Lake depression

EL

50.54415° N 70.46271° E

Dark chestnut solonetzic soil

Ak (0–17)

Light loamy, fresh, powdery, brownish gray, loose, rounded sand grains of white and brown color, plant roots, upper 8 cm are strongly intertwined with plant roots, soil effervesces from HCl from the depth of 5 cm

   

V1k (17–32)

Medium loamy, fresh, brownish gray, rounded sand grains of white and brown color, compacted, lumpy–prismatic, small plant roots, soil effervesces from HCl

   

V2k (32–70)

Heavy loamy, fresh, nutty–prismatic, very dense, vertical cracks with streaks of humus, abundantly saturated with carbonates (the section wall becomes white upon drying), rounded sand grains of white and brown color, small plant roots, soil effervesces from HCl

   

V3k (70–78)

Light loamy, fresh, light brown, indistinctly prismatic, compacted, rounded sand grains of white and brown color, saturated with carbonates, soil effervesces from HCl

   

S1ks

(78–101)

Light loamy, fresh, brown, structureless, slightly compacted upon drying, single spots of gypsum, rounded sand grains of white and brown color, soil effervesces from HCl

   

S2ks

(101–124)

Light loamy, fresh, brown, structureless, slightly compacted upon drying, gypsum accumulations in the form of spots and spherical (ball-shaped) formations, rounded sand grains of white and brown color, soil effervesces from HCl

   

S3ks

(124–…)

Light loamy, fresh, brown, structureless, loose, accumulations of gypsum in the form of spots, carbonates in the form of impregnation, rounded sand grains of white and brown color, soil effervesces from HCl

Catena position

Coordinates

Soil

Horizons, cm

Description

TR1

50. 54271° N 70.46065° E

Meadow–chestnut solonetzic saline soil

Ak (0–20)

Light loamy, dry, loose, upper 2 cm are abundantly intertwined with plant roots, brownish gray, lumpy–powdery, rounded sand grains of white and brown color, soil effervesces from HCl from the depth of 5 cm

   

V1k (20–51)

Light loamy, fresh, whitish brown, streaks of humus, lumpy–nutty, carbonates in the form of impregnation, rounded sand grains of white and brown color, small plant roots, compacted, soil effervesces from HCl

   

V2skg

(51–89)

Medium loamy, fresh, compacted, whitish brown (due to salts and gypsum), nutty–prismatic, rounded sand grains of white and brown color, gypsum accumulations in the form of spots and tubes, salt crystals abundantly appear on the section wall upon drying, individual small roots, carbonates along pores and root passages in the form of small tubes, soil effervesces from HCl

   

S1kg

(89–124)

Lightly loamy, fresh, brown, rounded sand grains of white and brown color, sand grains are glued together by clay material into conglomerates, salt crystals abundantly appear on the section wall upon drying, structureless, sticky, streaked with small black dots of 0.3–0.5 mm (possibly manganese structures), there are no gypsum structures, soil effervesces from HCl

   

S2k (124–…)

Light loamy, sticky, structureless, fresh, brown, rounded sand grains of white and brown color, the horizon contains a layer of sand mixed with loam, there are no gypsum structures, soil effervesces from HCl

TR2

50.54246° N 70.46014° E

Crustal saline solonetz

Ak (0–2)

Light loamy, gray, dry, powdery, intertwined with roots of steppe vegetation, loose, rounded sand grains of white and brown color, soil effervesces from HCl

   

V1k (2–18)

Heavy loamy, brownish gray, compacted, nutty–columnar, plant roots, rounded sand grains of white and brown color, carbonates in the form of spots, dry, soil effervesces from HCl

   

V2ksg

(18–100)

Heavy loamy, wet, brown, sticky, grained, gypsum in the form of spots and tubes, rusty spots, the section wall is covered with salt crystals upon drying, rounded sand grains of white and brown color, loose, soil effervesces from HCl

AC

50.54190° N 70.45928° E

Shor solonchak

Crust (0–2)

Heavy loamy, gray, wet, loose, wall saltpeters, structureless, plastic, sticky, soil effervesces from HCl

   

Skg (2–40)

Heavy loamy, brown, wet, loose, wall saltpeters, structureless, plastic, sticky, soil effervesces from HCl

Catena position

Coordinates

Soil

Horizons, cm

Description

Kazakhstan. Karaganda Region, environs of the settlement of Barshino. Lake depression

EL

49.62547° N 69.47282° E

Light-chestnut surface–stony soil

A (0–13)

Sandy loam, medium stony, fresh, light gray-brown, slightly compacted, lumpy powdery fine earth, plant roots, soil does not effervesce from HCl

   

V (13–30)

Sandy loam, very stony, brown, denser than the previous one, the amount of solid structures increases sharply, the fine earth is organized into a lumpy–nutty structure, soil does not effervesce from HCl

TR1

49.62322° N 69.47160° E

Meadow chestnut surface–stony soil

Ad (0–5)

Sandy loam, intertwined with roots of steppe vegetation (approximately 40–50% of the horizon), fresh, gray, lumpy powdery fine earth, compacted by roots, there is no skeleton, soil does not effervesce from HCl

   

A (5–14)

Sandy loam, fresh, gray, lumpy powdery fine earth, many plant roots, slightly compacted, there is no skeleton, soil does not effervesce from HCl

   

AV (14–32)

Sandy loam, medium stony, fresh, brown, plant roots, fresh, lumpy fine earth, slightly compacted, soil does not effervesce from HCl

   

VS (32–45)

Sandy loam, very stony, fresh, whitish brown, loosely lumpy fine earth, denser than the previous one, single plant roots, soil does not effervesce from HCl

TR2

49.62237° N 69.47198° E

Crustal surface–stony solonetz

A (0–3)

Sandy loam, slightly stony, dry, gray, lumpy powdery fine earth, a small amount of plant roots, soil does not effervesce from HCl

   

V (3–12)

Sandy loam, slightly stony, fresh, grayish brown, columnar, many plant roots, dense, soil does not effervesce from HCl

   

Sk (12–36)

Sandy loam, medium stony, structureless fine earth, fresh, brownish brown, single plant roots, less dense than the overlying horizon, soil effervesces from HCl

   

Dk (36–…)

Rocky crimson mass mixed with fine earth of the same color, a small amount of small dead plant roots, soil effervesces from HCl

TR3

49.62034° N

39.47446° E

Crustal surface–stony solonetz

A (0–4)

Sandy loam, medium stony, fresh, cracking crust on the surface, loose, powdery fine earth, gray-brown, there are many plant roots, but they do not form turf, soil does not effervesce from HCl

   

V (4–30)

Clayey, medium-stony, very dense, lumpy, brownish brown, fresh, dead plant roots, soil does not effervesce from HCl

AC

49.61977° N 69.47681° E

Shor solonchak

Ks (0–1)

Salt crust, soil effervesces from HCl

   

Sgkg (1–30)

Clayey, brown, structureless, wet, plant roots are found in the upper part of the horizon, salt crystals appear on the section wall upon drying, soil effervesces from HCl

Appendix 2

Spring population of carabids and tenebrionids on the steppe catenas of central Kazakhstan in 1976–78 and in 2018 (the sum of specimens per 100 trap days). Legends: EL is eluvial, TR is transit, AC is accumulative catena position; L is the latitudinal group of ranges: B is boreal, SH is subboreal humid, SA is subarid, PZ is polyzonal.

A. Subzone of the typical arid steppe, Shortandy

 

Beetle species

1976

1978

2018

positions

EL

TR

AC

EL

TR

AC

EL

TR

AC

L

Carabidae

         

B

Agonum fuliginosum

3

3

PZ

Agonum thoreyi

3

B

Agonum viduum

5

PZ

Amara aenea

2

1

B

Amara infima

3

SA

Amara pastica

1

B

Amara plebeja

1

SH

Amara tibialis

18

1

14

5

PZ

Anisodactylus binotatus

3

SH

Badister unipustulatus

1

5

SA

Bembidion varium

3

SH

Bembidion biguttatum

8

B

Bembidion humerale

11

SH

Bembidion minimum

5

SH

Bembidion octomaculatum

35

30

SA

Bembidion pallidiveste (?)

6

9

PZ

Bembidion properans

1

144

2

4

5

PZ

Bembidion quadrimaculatum

1

3

SH

Bembidion quadripustulatum

3

B

Bembidion transparens

1

41

10

6

SH

Bradycellus caucasicus

60

7

B

Calosoma investigator

2

SH

Carabus clathratus

1

8

SA

Carabus cribellatus

4

3

3

3

SA

Carabus estreicheri

1

PZ

Carabus granulatus

5

B

Chlaenius nigricornis

1

6

3

10

SA

Chlaenius spoliatus

10

PZ

Chlaenius tristis

5

PZ

Clivina fossor

5

SH

Curtonotus aulicus

15

SH

Curthonotus castaneus

3

SH

Curtonotus convexiusculus

2

SH

Cymindis angularis

1

2

SA

Cymindis lateralis

1

SA

Dyschiriodes rufipes

3

2

28

3

Dyschiriodes sp.

2

SH

Elaphrus cupreus

10

SA

Harpalus amplicollis

5

3

2

SA

Harpalus anxius

5

5

5

SA

Harpalus calathoides

1

5

2

PZ

Harpalus distinguendus

2

SA

Harpalus modestus

1

 

Beetle species

1976

1978

2018

positions

EL

TR

AC

EL

TR

AC

EL

TR

AC

SA

Harpalus politus

3

2

SA

Harpalus pusillus (?)

1

SH

Harpalus smaragdinus

1

8

SA

Harpalus subcylindricus

3

SH

Harpalus tardus

1

SA*

Harpalus tenebrosus

2

SA

Microlestes fissuralis

3

SA

Microlestes maurus

10

PZ

Microlestes minutulus

33

81

22

25

130

85

15

SH

Oodes helopioides

18

SH

Oxypselaphus obscurus

5

SH

Poecilus cupreus

2

29

4

3

SH

Poecilus punctulatus

18

2

1

SA

Poecilus sericeus

5

1

2

13

5

SA

Poecilus subcoeruleus

2

PZ

Poecilus versicolor

2

4

3

SA

Pseudotaphoxenus rufitarsis

3

SH

Pterostichus anthracinus

25

SH

Pterostichus gracilis

8

SH

Pterostichus macer

1

5

5

16

B

Pterostichus minor

3

26

10

7

PZ

Pterostichus niger

4

3

5

PZ

Pterostichus nigrita

3

30

PZ

Pterostichus strenuus

2

3

SH

Pterostichus vernalis

5

3

PZ

Stenolophus mixtus

5

SA

Microlestes plagiatus

10

SH

Syntomus truncatellus

2

17

45

13

3

SA

Taphoxenus gigas

1

3

 

Total number of Carabidae species

65

299

251

126

212

192

25

69

213

 

Total number of Carabidae individuals

18

16

16

12

17

16

5

14

27

 

Menhinick’s index

2.2

0.9

1.0

1.1

1.2

1.2

1.0

1.7

1.8

 

Tenebrionidae

         
 

Blaps halophila

3

5

3

2

 

Blaps lethifera

2

1

 

Centorus procerus moldaviensis

        

1

 

Crypticus quisquilius

3

15

 

Gonocephalum granulatum pusillum

12

2

16

8

2

5

107

 

Opatrum riparium

36

3

82

5

 

Opatrum sabulosum

11

96

18

2

23

 

Pedinus femoralis

6

17

2

5

18

 

Platyscelis hypolitha

2

 

Tentyria nomas

2

15

5

 

Total number of Tenebrionidae species

7

3

6

7

3

3

4

 

Total number of Tenebrionidae individuals

39

43

137

198

9

25

153

 

Menhinick’s index

1.1

0.5

0.5

0.6

1.0

0.6

0.3

B. Dry steppe, Arykty

 

Beetle species

1976

1978

2018

positions

EL

TR

AC

EL

TR

AC

EL

TR

AC

L

Carabidae

         

B

Amara infima

7

B

Amara littorea

4

6

SA

Amara pastica

4

SH

Amara tibialis

14

3

SA

Brachinus hamatus

3

47

40

SH

Broscus semistriatus

3

5

SH

Calosoma auropunctatum

6

SH

Calosoma denticolle

10

SH

Carabus clathratus

10

6

3

5

SA

Corsyra fusula

20

SA

Harpalus anxius

3

PZ

Harpalus distinguendus

8

SA

Harpalus sarmaticus

7

SH

Harpalus smaragdinus

10

SA

Harpalus subcylindricus

3

PZ

Microlestes minutulus

70

34

6

328

208

SA

Microlestes plagiatus

10

6

SA

Microlestes schroederi

7

SH

Poecilus cupreus

58

6

SH

Poecilus punctulatus

10

SA

Poecilus sericeus

36

18

30

7

3

SA

Poecilus subcoeruleus

16

6

33

3

SH

Pterostichus macer

1

62

60

20

23

B

Pterostichus minor

4

7

15

PZ

Pterostichus nigrita

6

3

SH

Syntomus truncatellus

3

30

3

SA

Taphoxenus gigas

16

3

10

7

 

Total number of Carabidae species

4

6

9

3

9

10

8

6

4

 

Total number of Carabidae individuals

60

174

184

27

430

275

9

97

51

 

Menhinick’s index

0.5

0.5

0.7

0.6

0.4

0.6

0.8

0.6

0.6

 

Tenebrionidae

         
 

Blaps halophila

40

52

30

10

7

 

Blaps lethifera

27

3

 

Centorus rufipes

        

1

 

Crypticus quisquilius

3

5

2

5

2

 

Gonocephalum granulatum pusillum

3

26

382

125

7

 

Gonocephalum pygmaeum

7

25

10

 

Oodescelis polita

5

5

3

3

3

 

Opatrum riparium

 

Opatrum sabulosum

10

6

3

3

 

Pedinus femoralis

6

20

3

 

Platyscelis hypolitha

6

3

 

Tentyria nomas

234

47

17

167

10

3

460

153

44

 

Total number of Tenebrionidae species

4

6

3

7

5

4

6

7

2

 

Total number of Tenebrionidae individuals

287

83

32

268

406

133

543

182

51

 

Menhinick’s index

0.2

0.7

0.5

0.4

0.3

0.3

0.3

0.5

0.3

C. Deserted steppe, Barshyn (Barshino)

 

Beetle species

1976

1978

2018

positions

EL

TR

AC

EL

TR

AC

EL

TR

AC

L

Carabidae

         

SH

Agonum viridicupreum

30

8

Amara (Bradytus) sp.

6

SA

Bembidion pallidiveste (?)

10

SA

Brachinus hamatus

200

SH

Calosoma auropunctatum

6

8

SH

Calosoma denticolle

6

4

SA

Carabus bessarabicus

6

16

8

SA

Chlaenius spoliatus

30

PZ

Chlaenius tristis

30

SH

Curtonotus convexiusculus

10

SA

Cymindis lateralis

10

60

SA*

Cymindis violacea (?)

30

4

SH

Elaphrus cupreus

60

SA

Harpalus dispar splendens

8

SA

Harpalus salinus

14

16

SH

Harpalus smaragdinus

4

SA

Harpalus steveni

12

SA

Microlestes maurus

4

PZ

Microlestes minutulus

80

10

SA

Microlestes plagiatus

84

SH

Ophonus rufibarbis

6

SA

Poecilus crenuliger

20

SH

Poecilus cupreus

50

SA

Poecilus laevicollis

8

SA

Poecilus sericeus

12

SA

Poecilus subcoeruleus

70

58

392

SA

Pseudotaphoxenus tillesii

6

SH

Pterostichus macer

6

24

16

SA

Taphoxenus gigas

4

8

1

4

 

Total number of Carabidae species

3

10

8

3

2

10

1

5

3

 

Total number of Carabidae individuals

48

136

436

28

74

668

1

48

20

 

Menhinick’s index

0.4

0.9

0.4

0.6

0.2

0.4

1.0

0.7

0.7

 

Tenebrionidae

         
 

Anatolica lata

5

6

124

4

16

 

Blaps halophila

14

26

8

16

12

24

 

Blaps lethifera

8

12

 

Centorus calcaroides intermedius

        

1

 

Centorus filiformis

8

 

Centorus procerus

10

6

16

 

Oodescelis polita

70

50

4

 

Opatrium sabulosum

8

8

 

Pedinus femoralis

10

6

8

8

8

 

Platyscelis rugifrons

12

 

Platyscelis sp.

200

6

54

 

Tentyria nomas

30

6

50

8

72

20

 

Total number of Tenebrionidae species

5

6

1

5

6

1

4

8

2

 

Total number of Tenebrionidae individuals

308

104

6

262

90

16

100

92

24

 

Menhinick’s index

0.3

0.6

0.4

0.3

0.6

0.2

0.4

0.8

0.2

  1. * With the transition to the arid group of species.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mordkovich, V.G., Khudyaev, S.A., Dudko, R.Y. et al. Zoological Indication of Climate Change in the Central Kazakh Steppe Compared to the Middle of the 20th Century Using the Example of Carabid and Tenebrionid Beetles. Contemp. Probl. Ecol. 13, 443–468 (2020). https://doi.org/10.1134/S1995425520050078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425520050078

Keywords:

Navigation