Skip to main content
Log in

High-throughput isolation of fetal nucleated red blood cells by multifunctional microsphere-assisted inertial microfluidics

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Being easy, safe and reliable, non-invasive prenatal diagnosis (NIPD) has been greatly pursued in recent years. Holding the complete genetic information of the fetus, fetal nucleated red blood cells (fNRBCs) are viewed as a suitable target for NIPD application. However, effective separating fNRBCs from maternal peripheral blood for clinic use still faces great challenges, given that fNRBCs are extremely rare in maternal blood circulation. Here, by combining the high-throughput inertial microfluidic chip with multifunctional microspheres as size amplification, we develop a novel method to isolate fNRBCs with high performance. To enlarge the size difference between fNRBCs and normal blood cells, we use the gelatin coated microspheres to capture fNRBCs with anti-CD147 as specific recognizer at first. The size difference between fNRBCs captured by the microspheres and normal blood cells makes it easy to purify the captured fNRBCs through the spiral microfluidic chip. Finally, the purified fNRBCs are mildly released from the microspheres by enzymatically degrading the gelatin coating. Cell capture efficiency about 81%, high purity of 83%, as well as cell release viability over 80% were achieved using spiked samples by this approach. Additionally, fNRBCs were successfully detected from peripheral blood of pregnant women with an average of 24 fNRBCs per mL, suggesting the great potential of this method for clinical non-invasive prenatal diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • P. Bayrak-Toydemir, E. Pergament, M. Fiddler, Applying a test system for discriminating fetal from maternal cells. Prenat. Diagn. 23(8), 619–624 (2003)

    Article  Google Scholar 

  • A.L. Beaudet, Using fetal cells for prenatal diagnosis: history and recent progress. Am. J. Med. Genet. C: Semin. Med. Genet. 172, 123–127 (2016)

    Article  Google Scholar 

  • P. Benn, H. Cuckle, E. Pergament, Non-invasive prenatal testing for aneuploidy: current status and future prospects. Ultrasound Obstet. Gynecol. 42, 15 (2013)

    Article  Google Scholar 

  • Y. Byeon, C.S. Ki, K.H. Han, Isolation of nucleated red blood cells in maternal blood for Non-invasive prenatal diagnosis. Biomed. Microdevices 17(6), 118 (2015)

    Article  Google Scholar 

  • H.O.D.M. Choolani, C. Campagnoli, S. Kumar, I. Roberts, P.R. Bennett, N.M. Fisk, Simultaneous fetal cell identification and diagnosis by epsilon-globin chain immunophenotyping and chromosomal fluorescence in situ hybridization. Blood 98, 554–557 (2001)

    Article  Google Scholar 

  • H.C. Fan, W. Gu, J. Wang, Y.J. Blumenfeld, Y.Y. El-Sayed, S.R. Quake, Non-invasive prenatal measurement of the fetal genome. Nature 487, 320–324 (2012)

    Article  Google Scholar 

  • C. Feng, Z. He, B. Cai, J. Peng, J. Song, X. Yu, Y. Sun, J. Yuan, X. Zhao, Y. Zhang, Non-invasive prenatal diagnosis of chromosomal aneuploidies and microdeletion syndrome using fetal nucleated red blood cells isolated by nanostructure microchips. Theranostics 8(5), 1301–1311 (2018)

    Article  Google Scholar 

  • E. Flori, B. Doray, E. Gautier, M. Kohler, P. Ernault, J. Flori, J.M. Costa, Circulating cell-free fetal DNA in maternal serum appears to originate from cyto- and syncytio-trophoblastic cells. Hum. Reprod. 19(3), 723–724 (2004)

    Article  Google Scholar 

  • D. Gänshirt-Ahlert, M. Burschyk, H.S.P. Garritsen, L. Helmer, P. Miny, J. Horst, H.P.G. Schneider, W. Holzgreve, Magnetic cell sorting and the transferrin receptor as potential means of prenatal diagnosis from maternal blood. Am. J. Obstet. Gynecol. 166(5), 1350–1355 (1992)

    Article  Google Scholar 

  • S. Hahn, X.Y. Zhong, W. Holzgreve, Pecent progress in non-invasive prenatal diagnosis. Fetal Neonatal Med. 13, 57–62 (2008)

    Article  Google Scholar 

  • Z.B. He, F. Guo, C. Feng, B. Cai, J.P. Lata, R.X. He, Q.Q. Huang, X.L. Yu, L. Rao, H.Q. Liu, S.S. Guo, W. Liu, T.J. Huang, X.Z. Zhao, Fetal nucleated red blood cell analysis for non-invasive prenatal diagnostics using a nanostructure microchip. J. Mater. Chem. B 5, 226–235 (2016)

    Article  Google Scholar 

  • L.A. Herzenberg, D.W. Bianchi, J. Schröder, H.M. Cann, G.M. Iverson, Fetal cells in the blood of pregnant women: detection and enrichment by fluorescence-activated cell sorting. Proc. Natl. Acad. Sci. U. S. A. 76, 1453–1455 (1979)

    Article  Google Scholar 

  • S. Hou, J.-F. Chen, M. Song, Y. Zhu, Y.J. Jan, S.H. Chen, T.-H. Weng, D.-A. Ling, S.-F. Chen, T. Ro, A.-J. Liang, T. Lee, H. Jin, M. Li, L. Liu, Y.-S. Hsiao, P. Chen, H.-H. Yu, M.-S. Tsai, M.D. Pisarska, A. Chen, L.-C. Chen, H.-R. Tseng, Imprinted NanoVelcro microchips for isolation and characterization of circulating fetal trophoblasts: toward noninvasive prenatal diagnostics. ACS Nano 11(8), 8167–8177 (2017)

    Article  Google Scholar 

  • R. Huang, T.A. Barber, M.A. Schmidt, R.G. Tompkins, M. Toner, D.W. Bianchi, R. Kapur, W.L. Flejter, A microfluidics approach for the isolation of nucleated red blood cells (NRBCs) from the peripheral blood of pregnant women. Prenat. Diagn. 28(10), 892–899 (2008)

    Article  Google Scholar 

  • D. Huang, X. Shi, Y. Qian, W. Tang, L. Liu, N. Xiang, Z. Ni, Rapid separation of human breast cancer cells from blood using a simple spiral channel device. Anal. Methods 8(30), 5940–5948 (2016)

    Article  Google Scholar 

  • Q. Huang, F.B. Wang, C.H. Yuan, Z. He, L. Rao, B. Cai, B. Chen, S. Jiang, Z. Li, J. Chen, W. Liu, F. Guo, Z. Ao, S. Chen, X.Z. Zhao, Gelatin nanoparticle-coated silicon beads for density-selective capture and release of heterogeneous circulating tumor cells with high purity. Theranostics 8(6), 1624–1635 (2018)

    Article  Google Scholar 

  • L. Hui, J. Barclay, A. Poulton, B. Hutchinson, J.L. Halliday, Prenatal diagnosis and socioeconomic status in the non-invasive prenatal testing era: a population-based study. Aust. N. Z. J. Obstet. Gynaecol. 58(4), 404–410 (2018)

    Article  Google Scholar 

  • R.M. Jack, M.M. Grafton, D. Rodrigues, M.D. Giraldez, C. Griffith, R. Cieslak, M. Zeinali, C. Kumar Sinha, E. Azizi, M. Wicha, M. Tewari, D.M. Simeone, S. Nagrath, Ultra-specific isolation of circulating tumor cells enables rare-cell RNA profiling. Adv. Sci. (Weinh) 3(9), 1600063 (2016)

    Article  Google Scholar 

  • C. Kantak, C.P. Chang, C.C. Wong, A. Mahyuddin, M. Choolani, A. Rahman, Lab-on-a-chip technology: Impacting non-invasive prenatal diagnostics (NIPD) through miniaturisation. Lab Chip 14(5), 841–854 (2014)

    Article  Google Scholar 

  • D.M. Kavanagh, M. Kersaudy-Kerhoas, R.S. Dhariwal, M.P. Desmulliez, Current and emerging techniques of fetal cell separation from maternal blood. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 878(22), 1905–1911 (2010)

    Article  Google Scholar 

  • B. Kwak, J. Lee, J. Lee, H.S. Kim, S. Kang, Y. Lee, Spiral shape microfluidic channel for selective isolating of heterogenic circulating tumor cells. Biosens. Bioelectron. 101, 311–316 (2018)

    Article  Google Scholar 

  • K.H. Kwon, Y.J. Jeon, H.S. Hwang, K.A. Lee, Y.J. Kim, H.W. Chung, M.G. Pang, A high yield of fetal nucleated red blood cells isolated using optimal osmolality and a double-density gradient system. Prenat. Diagn. 27(13), 1245–1250 (2007)

    Article  Google Scholar 

  • D. Lee, P. Sukumar, A. Mahyuddin, M. Choolani, G. Xu, Separation of model mixtures of epsilon-globin positive fetal nucleated red blood cells and anucleate erythrocytes using a microfluidic device. J. Chromatogr. A 1217, 1862–1866 (2010)

    Article  Google Scholar 

  • X. Li, T. Yang, C.S. Li, L. Jin, H. Lou, Y. Song, Biomed. Opt. Express 9(7), 3167–3176 (2018)

    Article  Google Scholar 

  • J.M. Martel, M. Toner, Inertial focusing dynamics in spiral microchannels. Phys. Fluids (1994) 24(3), 32001 (2012)

    Article  Google Scholar 

  • G. Moser, S. Drewlo, B. Huppertz, D.R. Armant, Trophoblast retrieval and isolation from the cervix: Origins of cervical trophoblasts and their potential value for risk assessment of ongoing pregnancies. Hum. Reprod. Update 24(4), 484–496 (2018)

    Article  Google Scholar 

  • O.M.Y. Ngan, H. Yi, S. Ahmed, Service provision of non-invasive prenatal testing for Down syndrome in public and private healthcare sectors: a qualitative study with obstetric providers. BMC Health Serv. Res. 18(1), 731 (2018)

    Article  Google Scholar 

  • G. Norbury, C.J. Norbury, Non-invasive prenatal diagnosis of single gene disorders: how close are we? Semin. Fetal Neonatal Med. 13(2), 76–83 (2008)

    Article  Google Scholar 

  • S. Ponnusamy, N. Mohammed, S.S.Y. Ho, H.M. Zhang, Y.H. Chan, Y.W. Ng, L.L. Su, A.P. Mahyuddin, A. Venkat, J. Chan, M. Rauff, A. Biswas, M. Choolani, In vivo model to determine fetal-cell enrichment efficiency of novel noninvasive prenatal diagnosis. Prenat. Diagn. 28, 494–502 (2008)

    Article  Google Scholar 

  • Y. Purwosunu, A. Sekizawa, A. Farina, T. Okai, H. Takabayashi, P. Wen, H. Yura, M. Kitagawa, Enrichment of NRBC in maternal blood: a more feasible method for noninvasive prenatal diagnosis. Prenat. Diagn. 26, 545 (2006)

    Article  Google Scholar 

  • L. Rao, Q.-F. Meng, Q. Huang, Z. Wang, G.-T. Yu, A. Li, W. Ma, N. Zhang, S.-S. Guo, X.-Z. Zhao, K. Liu, Y. Yuan, W. Liu, Platelet-leukocyte hybrid membrane-coated immunomagnetic beads for highly efficient and highly specific isolation of circulating tumor cells. Adv. Funct. Mater. 28(34) (2018)

  • B. Renga, Non-invasive prenatal diagnosis of fetal aneuploidy using cell free fetal DNA. Eur. J. Obstet. Gynecol. Reprod. Biol. 225, 5–8 (2018)

    Article  Google Scholar 

  • W.P. Robinson, J. Barrett, L. Bernard, A. Telenius, F. Bernasconi, R.D. Wilson, R.G. Best, P.N. Howard-Peebles, S. Langlois, D.K. Kalousek, Meiotic origin of trisomy in confined placental mosaicism is correlated with presence of fetal uniparental disomy, high levels of trisomy in trophoblast, and increased risk of fetal intrauterine growth restriction. Am. J. Hum. Genet. 60, 917 (1997)

    Google Scholar 

  • S. Shen, C. Tian, T. Li, J. Xu, S.-W. Chen, Q. Tu, M.-S. Yuan, W. Liu, J. Wang, Spiral microchannel with ordered micro-obstacles for continuous and highly-efficient particle separation. Lab Chip 17(21), 3578–3591 (2017)

    Article  Google Scholar 

  • R. Singh, L. Hatt, K. Ravn, I. Vogel, O.B. Petersen, N. Uldbjerg, P. Schelde, Fetal cells in maternal blood for prenatal diagnosis: a love story rekindled. Biomark. Med 11, 705 (2017)

    Article  Google Scholar 

  • M.E. Warkiani, B.L. Khoo, L. Wu, A.K. Tay, A.A. Bhagat, J. Han, C.T. Lim, label-free isolation of circulating tumor cells from blood using spiral microfluidics. Nat. Protoc. 11(1), 134–148 (2016)

    Article  Google Scholar 

  • X. Wei, Z. Ao, L. Cheng, Z. He, Q. Huang, B. Cai, L. Rao, Q. Meng, Z. Wang, Y. Sun, W. Liu, Y. Zhang, S. Guo, F. Guo, X.Z. Zhao, Highly sensitive and rapid isolation of fetal nucleated red blood cells with microbead-based selective sedimentation for non-invasive prenatal diagnostics. Nanotechnology 29(43), 434001 (2018)

    Article  Google Scholar 

  • M. Winter, T. Hardy, M. Rezaei, V. Nguyen, D. Zander-Fox, M. Ebrahimi Warkiani, B. Thierry, Isolation of circulating fetal trophoblasts using inertial microfluidics for noninvasive prenatal testing. Adv. Mater. Technol. 3(7) (2018)

  • N. Xiang, X. Zhang, Q. Dai, J. Cheng, K. Chen, Z. Ni, Fundamentals of elasto-inertial particle focusing in curved microfluidic channels. Lab Chip 16(14), 2626–2635 (2016)

    Article  Google Scholar 

  • J.-H. Xu, F.-P. Gao, L.-L. Li, H.L. Ma, Y.-S. Fan, W. Liu, S.-S. Guo, X.-Z. Zhao, H. Wang, Gelatin–mesoporous silica nanoparticles as matrix metalloproteinases-degradable drug delivery systems in vivo. Microporous Mesoporous Mater. 182, 165–172 (2013)

    Article  Google Scholar 

  • X. Yu, R. He, S. Li, B. Cai, L. Zhao, L. Liao, W. Liu, Q. Zeng, H. Wang, S.S. Guo, X.Z. Zhao, Magneto-controllable capture and release of cancer cells by using a micropillar device decorated with graphite oxide-coated magnetic nanoparticles. Small 9(22), 3895–3901 (2013)

    Article  Google Scholar 

  • N. Zhang, Y. Deng, Q. Tai, B. Cheng, L. Zhao, Q. Shen, R. He, L. Hong, W. Liu, S. Guo, K. Liu, H.R. Tseng, B. Xiong, X.Z. Zhao, Electrospun TiO2 nanofiber-based cell capture assay for detecting circulating tumor cells from colorectal and gastric cancer patients. Adv. Mater. 24(20), 2756–2760 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

Authors Z. X. Wang and L. Cheng contributed equally to this work. This work is supported by the National R&D Program for Major Research Instruments (No. 81527801), the National Natural Science Foundation of China (No. 51272184, 81572860, and 61474084) and the National Science Fund for Talent Training in Basic Science (No. J1210061). National Key R&D Program (Grant No. 2016YFC1000701).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanzhen Zhang, Lei Liao or Xing-Zhong Zhao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1025 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Cheng, L., Wei, X. et al. High-throughput isolation of fetal nucleated red blood cells by multifunctional microsphere-assisted inertial microfluidics. Biomed Microdevices 22, 75 (2020). https://doi.org/10.1007/s10544-020-00531-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10544-020-00531-2

Keywords

Navigation