Skip to main content

Advertisement

Log in

Effects of rotational and continuous overgrazing on newly assimilated C allocation

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

In situ 13CO2 pulse labeling was conducted in temperate grasslands, managed by no grazing, rotational, or continuous overgrazing, to trace the allocation pattern and the dynamics of newly assimilated C into the plant-soil system. Forty-eight days after the labeling, the belowground 13C allocations under overgrazing were substantially lower than those under no grazing (55% for no grazing, 29% for rotational grazing, 36% for continuous grazing). Overgrazing reduced the relative amount of C incorporation into soil organic C (SOC). Overgrazing led to more C losses through shoot respiration (23%, 54%, 46% by no, rotational, and continuous grazing, respectively), but fewer losses via soil respiration (33%, 12%, 13% by no, rotational, and continuous grazing, respectively). Continuous grazing produced more C allocation to roots than rotational grazing (12% vs 4%), indicating that plants had stronger root C storage capacity under continuous than rotational grazing. The mean C residence time of the belowground rhizodeposits and C used for root respiration under rotational grazing (2.08 days) was longer than that under no grazing (1.47 days) or continuous grazing (1.37 days). Overgrazing decreased the C stocks in shoots but remained stable in roots. Meanwhile, overgrazing decreased the newly assimilated C allocation to belowground, creating a negative effect on C sequestration. Under overgrazing regimes, continuous grazing is more preferable in the investigated temperate grasslands than rotational grazing for C allocation and sequestration in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdalla M, Hastings A, Chadwick D, Jones D, Evans C, Jones MB, Rees R, Smith P (2018) Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands. Agric Ecosyst Environ 253:62–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aboling S, Sternberg M, Perevolotsky A, Kigel J (2008) Effects of cattle grazing timing and intensity on soil seed banks and regeneration strategies in a Mediterranean grassland. Community Ecol 9:97–106

    Article  Google Scholar 

  • Aerts R, Boot R, Van der Aart P (1991) The relation between above-and belowground biomass allocation patterns and competitive ability. Oecologia 87:551–559

    Article  CAS  PubMed  Google Scholar 

  • Ahmed MA, Banfield CC, Sanaullah M, Gunina A, Dippold MA (2018) Utilisation of mucilage C by microbial communities under drought. Biol Fertil Soils 54(1):83–94

    Article  CAS  Google Scholar 

  • Belsky AJ, Carson WP, Jensen CL, Fox GA (1993) Overcompensation by plants: herbivore optimization or red herring? Evol Ecol 7:109–121

    Article  Google Scholar 

  • Block MD, Verduyn C, Brouwer DD, Cornelissen M (2005) Poly (ADP-ribose) polymerase in plants affects energy homeostasis, cell death and stress tolerance. Plant J 41:95–106

    Article  PubMed  CAS  Google Scholar 

  • Briske DD, Derner J, Brown J, Fuhlendorf SD, Teague W, Havstad K, Gillen RL, Ash AJ, Willms W (2008) Rotational grazing on rangelands: reconciliation of perception and experimental evidence. Rangel Ecol Manag 61:3–17

    Article  Google Scholar 

  • Briske DD, Sayre NF, Huntsinger L, Fernández-Giménez M, Budd B, Derner J (2011) Origin, persistence, and resolution of the rotational grazing debate: integrating human dimensions into rangeland research. Rangel Ecol Manag 64:325–334

    Article  Google Scholar 

  • Cao G, Tang Y, Mo W, Wang Y, Li Y, Zhao X (2004) Grazing intensity alters soil respiration in an alpine meadow on the Tibetan plateau. Soil Biol Biochem 36:237–243

    Article  CAS  Google Scholar 

  • Fu G, Zhang X, Yu C, Shi P, Zhou Y, Li Y, Yang P, Shen Z (2014) Response of soil respiration to grazing in an alpine meadow at three elevations in Tibet. Sci World J 2014:1–9

    Google Scholar 

  • Gao YZ, Giese M, Lin S, Sattelmacher B, Zhao Y, Brueck H (2008) Belowground net primary productivity and biomass allocation of a grassland in Inner Mongolia is affected by grazing intensity. Plant Soil 307:41–50

    Article  CAS  Google Scholar 

  • Grigulis K, Sheppard A, Ash J, Groves R (2001) The comparative demography of the pasture weed Echium plantagineum between its native and invaded ranges. J Appl Ecol 38:281–290

    Article  Google Scholar 

  • Hafner S, Unteregelsbacher S, Seeber E, Lena B, Xu X, Li X, Guggenberger G, Miehe G, Kuzyakov Y (2012) Effect of grazing on carbon stocks and assimilate partitioning in a Tibetan montane pasture revealed by 13CO2 pulse labeling. Glob Chang Biol 18:528–538

    Article  Google Scholar 

  • Hamilton EW III, Frank DA, Hinchey PM, Murray TR (2008) Defoliation induces root exudation and triggers positive rhizospheric feedbacks in a temperate grassland. Soil Biol Biochem 40(11):2865–2873

    Article  CAS  Google Scholar 

  • Han G, Hao X, Zhao M, Wang M, Ellert BH, Willms W, Wang M (2008) Effect of grazing intensity on carbon and nitrogen in soil and vegetation in a meadow steppe in Inner Mongolia. Agric Ecosyst Environ 125:21–32

    Article  CAS  Google Scholar 

  • Hancock J, McMeekan C (1954) Studies of grazing behaviour in relation to grassland management: III. Rotational compared with continuous grazing. J Agric Sci 45:96–103

    Article  Google Scholar 

  • Hao Y, He Z (2019) Effects of grazing patterns on grassland biomass and soil environments in China: a meta-analysis. PLoS One 14:1–15

    CAS  Google Scholar 

  • Harris D, Horwáth WR, Van Kessel C (2001) Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Sci Soc Am J 65:1853–1856

    Article  CAS  Google Scholar 

  • Hodgson J (1990) Grazing management. Science into practice. Longman Group UK Ltd. pp.203 pp. ref.7

  • Ingrisch J, Biermann T, Seeber E, Leipold T, Li M, Ma Y, Xu X, Miehe G, Guggenberger G, Foken T (2015) Carbon pools and fluxes in a Tibetan alpine Kobresia pygmaea pasture partitioned by coupled eddy-covariance measurements and 13CO2 pulse labeling. Sci Total Environ 505:1213–1224

    Article  CAS  PubMed  Google Scholar 

  • Jones M, Donnelly A (2004) Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2. New Phytol 164:423–439

    Article  Google Scholar 

  • Jones S, Rees R, Kosmas D, Ball B, Skiba U (2006) Carbon sequestration in a temperate grassland; management and climatic controls. Soil Use Manag 22:132–142

    Article  Google Scholar 

  • Klumpp K, Fontaine S, Attard E, Le Roux X, Gleixner G, Soussana JF (2009) Grazing triggers soil carbon loss by altering plant roots and their control on soil microbial community. J Ecol 97(5):876–885

    Article  CAS  Google Scholar 

  • Kuzyakov Y (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem 38:425–448

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Biryukova O, Kuznetzova T, Mölter K, Kandeler E, Stahr K (2002) Carbon partitioning in plant and soil, carbon dioxide fluxes and enzyme activities as affected by cutting ryegrass. Biol Fertil Soils 35:348–358

    Article  CAS  Google Scholar 

  • Levine JM, Adler PB, Yelenik SG (2004) A meta-analysis of biotic resistance to exotic plant invasions. Ecol Lett 7:975–989

    Article  Google Scholar 

  • Li W, Huang H, Zhang Z, Wu G (2011) Effects of grazing on the soil properties and C and N storage in relation to biomass allocation in an alpine meadow. J Soil Sci Plant Nutr 11(4):27–39

    Article  CAS  Google Scholar 

  • Li Y, Liu Y, Pan H, Hernández M, Guan X, Wang W, Zhang Q, Luo Y, Di H, Xu J (2020) Impact of grazing on shaping abundance and composition of active methanotrophs and methane oxidation activity in a grassland soil. Biol Fert Soils (online publication) 55:789–800. https://doi.org/10.1007/s00374-019-01394-3

    Article  CAS  Google Scholar 

  • Liang Q, Chen H, Gong Y, Fan M, Yang H, Lal R, Kuzyakov Y (2012) Effects of 15 years of manure and inorganic fertilizers on soil organic carbon fractions in a wheat-maize system in the North China plain. Nutr Cycl Agroecosyst 92:21–33

    Article  Google Scholar 

  • Lieth H (1978) Patterns of primary productivity in the biosphere. Hutchinson & Ross, Stroudsberg, PA, 342

  • Ma J, Huang X, Qin X, Ding Y, Hong J, Du G, Li X, Gao W, Zhang Z, Wang G (2017) Large manipulative experiments revealed variations of insect abundance and trophic levels in response to the cumulative effects of sheep grazing. Sci Rep 7:11297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miehe G, Schleuss PM, Seeber E, Babel W, Biermann T, Braendle M, Chen F, Coners H, Foken T, Gerken T (2019) The Kobresia pygmaea ecosystem of the Tibetan highlands–origin, functioning and degradation of the world’s largest pastoral alpine ecosystem: Kobresia pastures of Tibet. Sci Total Environ 648:754–771

    Article  CAS  PubMed  Google Scholar 

  • Mysterud A (2006) The concept of overgrazing and its role in management of large herbivores. Wildl Biol 12:129–141

    Article  Google Scholar 

  • Oates LG, Undersander DJ, Gratton C, Bell MM, Jackson RD (2011) Management-intensive rotational grazing enhances forage production and quality of subhumid cool-season pastures. Crop Sci 51(2):892–901

    Article  Google Scholar 

  • Pavlů V, Hejcman M, Pavlů L, Gaisler J (2003) Effect of rotational and continuous grazing on vegetation of an upland grassland in the Jizerské Hory Mts., Czech Republic. Folia Geobot 38(1):21–34

    Article  Google Scholar 

  • Piñeiro G, Paruelo JM, Oesterheld M, Jobbágy EG (2010) Pathways of grazing effects on soil organic carbon and nitrogen. Rangel Ecol Manag 63:109–119

    Article  Google Scholar 

  • Raiesi F, Asadi E (2006) Soil microbial activity and litter turnover in native grazed and ungrazed rangelands in a semiarid ecosystem. Biol Fertil Soils 43:76–82

    Article  Google Scholar 

  • Schönbach P, Wan H, Gierus M, Bai Y, Müller K, Lin L, Susenbeth A, Taube F (2011) Grassland responses to grazing: effects of grazing intensity and management system in an Inner Mongolian steppe ecosystem. Plant Soil 340:103–115

    Article  CAS  Google Scholar 

  • Scurlock J, Hall D (1998) The global carbon sink: a grassland perspective. Glob Chang Biol 4:229–233

    Article  Google Scholar 

  • Srivastava K, Jentsch A, Kreyling J, Glaser B, Wiesenberg GL (2018) Short-term carbon dynamics in a temperate grassland and heathland ecosystem exposed to 104 days of drought followed by irrigation. Isot Environ Health Stud 54:41–62

    Article  CAS  Google Scholar 

  • Steffens M, Kölbl A, Totsche KU, Kögel-Knabner I (2008) Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (PR China). Geoderma 143:63–72

    Article  CAS  Google Scholar 

  • Su Y, Li Y, Cui J, Zhao W (2005) Influences of continuous grazing and livestock exclusion on soil properties in a degraded sandy grassland, Inner Mongolia, northern China. Catena 59:267–278

    Article  Google Scholar 

  • Tälle M, Deák B, Poschlod P, Valkó O, Westerberg L, Milberg P (2016) Grazing vs. mowing: a meta-analysis of biodiversity benefits for grassland management. Agric Ecosyst Environ 222:200–212

    Article  Google Scholar 

  • Undersander D, Albert B, Cosgrove D, Johnson D, Peterson P (2002) Pastures for profit: a guide to rotational grazing. Cooperative Extensiton Publications, University of Wisconsin-Extension. pp. 1–38

  • Vallentine JF (2000) Grazing management. Elsevier. pp 1-25

  • von Lützow M, Kögel-Knabner I (2009) Temperature sensitivity of soil organic matter decomposition—what do we know? Biol Fertil Soils 46:1–15

    Article  Google Scholar 

  • Walton P, Martinez R, Bailey A (1981) A comparison of continuous and rotational grazing. Rangel Ecol Manag 34:19–21

    Article  Google Scholar 

  • Wang G, Qian J, Cheng G, Lai Y (2002) Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication. Sci Total Environ 291:207–217

    Article  CAS  Google Scholar 

  • Wang Z, Zhang Q, Staley C, Gao H, Ishii S, Wei X, Liu J, Cheng J, Hao M, Sadowsky MJ (2019) Impact of long-term grazing exclusion on soil microbial community composition and nutrient availability. Biol Fertil Soils 55:121–134

    Article  CAS  Google Scholar 

  • Wilsey BJ, Parent G, Roulet NT, Moore TR, Potvin C (2002) Tropical pasture carbon cycling: relationships between C source/sink strength, above-ground biomass and grazing. Ecol Lett 5:367–376

    Article  Google Scholar 

  • Wilson CH, Strickland MS, Hutchings JA, Bianchi TS, Flory SL (2018) Grazing enhances belowground carbon allocation, microbial biomass, and soil carbon in a subtropical grassland. Glob Chang Biol 24:2997–3009

    Article  PubMed  Google Scholar 

  • World Reference Base for Soil Resources (2014) World soil resources reports. 103. FAO, Rome

    Google Scholar 

  • Wu Y, Tan H, Deng Y, Wu J, Xu X, Wang Y, Tang Y, Higashi T, Cui X (2010) Partitioning pattern of carbon flux in a Kobresia grassland on the Qinghai-Tibetan Plateau revealed by field 13C pulse-labeling. Glob Chang Biol 16:2322–2333

    Article  Google Scholar 

  • Xu X, Ouyang H, Kuzyakov Y, Richter A, Wanek W (2006) Significance of organic nitrogen acquisition for dominant plant species in an alpine meadow on the Tibet plateau, China. Plant Soil 285:221–231

    Article  CAS  Google Scholar 

  • Xu X, Kuzyakov Y, Wanek W, Richter A (2008) Root-derived respiration and non-structural carbon of rice seedlings. Eur J Soil Biol 44:22–29

    Article  CAS  Google Scholar 

  • Yang Y, Wu L, Lin Q, Yuan M, Xu D, Yu H, Hu Y, Duan J, Li X, He Z (2013) Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland. Glob Chang Biol 19:637–648

    Article  PubMed  Google Scholar 

  • Yoshihara Y, Chimeddorj B, Buuveibaatar B, Lhagvasuren B, Takatsuki S (2008) Effects of livestock grazing on pollination on a steppe in eastern Mongolia. Biol Conserv 141(9):2376–2386

    Article  Google Scholar 

  • Zhou G, Zhou X, He Y, Shao J, Hu Z, Liu R, Zhou H, Hosseinibai S (2017) Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: a meta-analysis. Glob Chang Biol 23:1167–1179

    Article  PubMed  Google Scholar 

  • Zou J, Zhao L, Xu S, Xu X, Chen D, Li Q, Zhao N, Luo C, Zhao X (2014) Field 13CO2 pulse labeling reveals differential partitioning patterns of photoassimilated carbon in response to livestock exclosure in a Kobresia meadow. Biogeosciences 11:4381–4391

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was carried out on the Grassland Ecological Research Base of Inner Mongolia University. We thank a lot for the assistance of college president Yonghong Li, Inner Mongolia University. We also thank Ruixue Wang for her assistance in the field work and Yu Cui for her assistance in the laboratory work.

Funding

This study was supported by the National Key Research and Development Program of China (2016YFC0500502), National Natural Science Foundation of China (41771325; 41877089), Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0405), the National Key Basic Research Program of China (2014CB138803).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuqiang Tian or Xingliang Xu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Ouyang, S., Tian, Y. et al. Effects of rotational and continuous overgrazing on newly assimilated C allocation. Biol Fertil Soils 57, 193–202 (2021). https://doi.org/10.1007/s00374-020-01516-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-020-01516-2

Keywords

Navigation