Skip to main content

Advertisement

Log in

Tungsten Oxide–reduced Graphene Oxide Composites for Photoelectrochemical Water Splitting

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Photoelectrochemical (PEC) water splitting is the latest technology to produce hydrogen and electricity by using sunlight. The low bandgap of tungsten oxide (WO3) enables it as a suitable candidate for PEC water splitting. Reduced graphene oxide (rGO) is a material having extra thin sheets and a very large surface area with extreme conductivity. Graphene oxide (GO) has been synthesized by using a modified Hummer’s method. Hydrothermal reduction of GO gives rGO. WO3–graphene composites of different ratios have been prepared hydrothermally and then coated on indium tin oxide coated glass to make electrodes for water splitting. Various characterization techniques such as UV–visible spectroscopy, diffusion reflectance spectroscopy, X-ray diffraction, scanning electron microscopy, and linear sweep voltammetry (LSV) were used to study the absorbance/reflectance, structure, morphology, and optical/electrical properties of prepared nanostructures. In addition, WO3 particles were distributed on the strong sheets of rGO randomly. The IV-measurements were taken of rGO/WO3 electrodes under dark environment (very minor current ~ 250 nA) by using LSV. The electrodes exhibit maximum ~ 450 μA under dark environment, while photocurrent initiates from 1.0 mA to 3.2 mA under artificial sunlight. That is convincingly an exceptional result in the field of PEC cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Marlinda, A.R.; Yusoff, N.; Sagadevan, S.; Johan, M.R.: Recent developments in reduced graphene oxide nanocomposites for photoelectrochemical water-splitting applications. Int. J. Hydrog. Energy 1, 1 (2020)

    Google Scholar 

  2. Wondimu, T.H.; Chen, G.C.; Kabtamu, D.M.; Chen, H.Y.; Bayeh, A.W.; Huang, H.C.; Wang, C.H.: Highly efficient and durable phosphine reduced iron-doped tungsten oxide/reduced graphene oxide nanocomposites for the hydrogen evolution reaction. Int. J. Hydrogen Energy 43(13), 6481–6490 (2018)

    Google Scholar 

  3. Lior, N.: Energy resources and use: the present situation and possible paths to the future. Energy 33(6), 842–857 (2008)

    Google Scholar 

  4. Dunn, S.; Peterson, J.A.: Hydrogen futures: Toward a sustainable energy system. Worldwatch Institute, Washington, DC (2001)

    Google Scholar 

  5. Ke, J.; Zhou, H.; Liu, J.; Zhang, Z.; Duan, X.; Wang, S.: Enhanced light-driven water splitting by fast electron transfer in 2D/2D reduced graphene oxide/tungsten trioxide heterojunction with preferential facets. J. Colloid Interface Sci. 1(555), 413–422 (2019)

    Google Scholar 

  6. Ahmed, B.; Ojha, A.K.; Singh, A.; Hirsch, F.; Fischer, I.; Patrice, D.; Materny, A.: Well-controlled in situ growth of 2D WO3 rectangular sheets on reduced graphene oxide with strong photocatalytic and antibacterial properties. J. Hazard. Mater. 5(347), 266–278 (2018)

    Google Scholar 

  7. Sekar, S.; Ahmed, A.T.; Pawar, S.M.; Lee, Y.; Im, H.; Kim, D.Y.; Lee, S.: Enhanced water splitting performance of biomass activated carbon-anchored WO3 nanoflakes. Appl. Surf. Sci. 1(508), 145127 (2020)

    Google Scholar 

  8. Chen, D.; Ye, J.: Hierarchical WO3 hollow shells: dendrite, sphere, dumbbell, and their photocatalytic properties. Adv. Func. Mater. 18(13), 1922–1928 (2008)

    Google Scholar 

  9. Ahmad, H.; Kamarudin, S.K.; Minggu, L.J.; Kassim, M.: Hydrogen from Photocatalytic Water Splitting process; a review. Renew. Sustain. Energy Rev. 43, 599–610 (2015)

    Google Scholar 

  10. Meng, Z.D.; Zhu, L.; Choi, J.G.; Park, C.Y.; Oh, W.C.: Preparation, characterization and photocatalytic behavior of WO3-fullerene/TiO2 catalysts under visible light. Nanosc. Res. Lett. 6(1), 459 (2011)

    Google Scholar 

  11. Chen, T.; Zeng, B.; Liu, J.L.; Dong, J.H.; Liu, X.Q.; Wu, Z.; Yang, X.Z.; Li, Z.M.: High throughput exfoliation of graphene oxide from expanded graphite with assistance of strong oxidant in modified Hummers method. J. Phys: Conf. Ser. 188(1), 012051 (2009)

    Google Scholar 

  12. Meng, Z.D.; Zhu, L.; Choi, J.G.; Park, C.Y.; Oh, W.C.: Preparation, characterization and photocatalytic behavior of WO3-fullerene/TiO2 catalysts under visible light. Nanoscale Res. Lett. 6(1), 459 (2011)

    Google Scholar 

  13. Wu, H.; Xu, M.; Da, P.; Li, W.; Jia, D.; Zheng, G.: WO3–reduced graphene oxide composites with enhanced charge transfer for photoelectrochemical conversion. Phys. Chem. Chem. Phys. 15(38), 16138–16142 (2013)

    Google Scholar 

  14. Dikin, D.A.; Stankovich, S.; Zimney, E.J.; Piner, R.D.; Dommett, G.H.; Evmenenko, G.; Nguyen, S.T.; Ruoff, R.S.: Preparation and characterization of graphene oxide paper. Nature 448(7152), 457 (2007)

    Google Scholar 

  15. Choobtashania, M.; Akhavana, O.: Photocatalytic reduction of graphene oxide on tungsten oxide thin film.

  16. Xiao, M.; Wang, L.; Huang, X.; Wu, Y.; Dang, Z.: Synthesis and characterization of WO 3/titanate nanotubes nanocomposite with enhanced photocatalytic properties. J. Alloy. Compd. 470(1), 486–491 (2009)

    Google Scholar 

  17. Su, X.; Li, Y.; Jian, J.; Wang, J.: In situ etching WO 3 nanoplates: hydrothermal synthesis, photoluminescence and gas sensor properties. Mater. Res. Bull. 45(12), 1960–1963 (2010)

    Google Scholar 

  18. Choi, H.G.; Jung, Y.H.; Kim, D.K.: Solvothermal synthesis of tungsten oxide nanorod/nanowire/nanosheet. J. Am. Ceram. Soc. 88(6), 1684–1686 (2005)

    Google Scholar 

  19. Sanda, F.M.; Victor, M.E.; Monica, T.A.; Alina, C.: Spectrophotometric measurements techniques for fermentation process.

  20. Ho, G.W.; Chua, K.J.; Siow, D.R.: Metal loaded WO 3 particles for comparative studies of photocatalysis and electrolysis solar hydrogen production. Chem. Eng. J. 1(181), 661–666 (2012)

    Google Scholar 

  21. Eugen, C.A.: Spectrophotometry: principle and applications. Environment 7, 94–100 (2013)

    Google Scholar 

  22. Lajunen, L.: Spectrochemical analysis by atomic absorption and emission. R. Soci. Chem.; 2007.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shahzad Munir Ansari or M. Zubair Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, S.M., Khan, M.Z., Anwar, H. et al. Tungsten Oxide–reduced Graphene Oxide Composites for Photoelectrochemical Water Splitting. Arab J Sci Eng 46, 813–825 (2021). https://doi.org/10.1007/s13369-020-05011-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05011-6

Keywords

Navigation