Skip to main content

Advertisement

Log in

Fast Orange Peel-Mediated Synthesis of Silver Nanoparticles and Use as Visual Colorimetric Sensor in the Selective Detection of Mercury(II) Ions

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents the green synthesis of silver nanoparticles (AgNPs) using orange (Citrus sinensis) peel extract. The effects of different factors such as silver ion concentration, reaction time, temperature, pH, and extract quantity on the AgNPs synthesis were studied, enabling us to determine optimum synthesis conditions. We characterized the AgNPs with different techniques: UV–Visible Spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), FTIR, and XRD. The AgNPs showed yellowish brown to golden brown colors and a surface plasmon resonance (SPR) absorption band around a wavelength of 420 nm. FESEM images showed polydisperse AgNPs having an average size of about 55 nm. The XRD profile of the synthesized nanoparticles showed peaks that are characteristic of silver while the FTIR spectrum highlighted the functional groups associated with reducing silver ions and stabilizing the AgNPs. With the selected optimum conditions, the AgNPs were formed in less than 1 min. This is the fastest reaction time so far reported and is significantly shorter than in earlier reports. The AgNPs colloid solution was applied as nanosensor in the visual colorimetric detection of mercury(II) ions in water. The golden brown AgNPs colloid solution turned colorless and the characteristic SPR absorption band disappeared when mercury(II) ions were added to the solution. While the AgNPs show good sensitivity and selectivity for the colorimetric detection of mercury(II) ions with a detection limit of 1.24 × 10−6 mol/L (0.25 ppm), we also demonstrated the suitability of the method for detecting mercury(II) ions in drinking water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Annadhasan, M.; Muthukumarasamyvel, T.; Sankar Babu, V.R.; Rajendiran, N.: Green synthesized silver and gold nanoparticles for colorimetric detection of Hg2+, Pb2+, and Mn2+ in aqueous medium. ACS Sustain. Chem. Eng. 2, 887–896 (2014)

    Google Scholar 

  2. Mohamed, M.B.; Volkov, V.; Link, S.; El-Sayed, M.A.: The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Chem. Phys. Lett. 317, 517–523 (2000)

    Google Scholar 

  3. Rai, M.; Gade, A.; Yadav, A.: Biogenic nanoparticles: an introduction to what they re, how they are synthesized and their applications in microbiology. In: Rai, M., Duran, N. (eds.) Metal Nanoparticles in Microbiology, pp. 1–14. Springer, Berlin (2011)

    Google Scholar 

  4. Saxena, A.; Tripathi, R.M.; Zafar, F.; Singh, P.: Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity. Mater. Lett. 67, 91–94 (2012)

    Google Scholar 

  5. Yunus, I.S.; Harwin,; Kurniawan, A.; Adityawarman, D.; Indarto, A.: Nanotechnologies in water and air pollution treatment. Environ. Technol. Rev. 1, 136–148 (2012)

    Google Scholar 

  6. de Barros, C.H.N.; Cruz, G.C.F.; Mayrink, W.; Tasic, L.: Bio-based synthesis of silver nanoparticles from orange waste: effects of distinct biomolecule coatings on size, morphology, and antimicrobial activity. Nanotechnol. Sci. Appl. 11, 1–14 (2018)

    Google Scholar 

  7. Hemlata,; Meena, P.R.; Singh, A.P.; Tejavath, K.K.: Biosynthesis of silver nanoparticles using Cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines. ACS Omega 5, 5520–5528 (2020)

    Google Scholar 

  8. Akhtar, M.S.; Panwar, J.; Yun, Y.-S.: Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain. Chem. Eng. 1, 591–602 (2013)

    Google Scholar 

  9. Park, Y.: A new paradigm shift for the green synthesis of antibacterial silver nanoparticles utilizing plant extract. Toxicol. Res. 30, 169–178 (2014)

    Google Scholar 

  10. Hembram, K.C.; Kumar, R.; Kandha, L.; Parhi, P.K.; Kundu, C.N.; Bindhani, B.K.: Therapeutic prospective of plant induced silver nanoparticles application as antimicrobial and anticancer agent. Artif. Cells Nanomed. Biotechnol. 46, S38–S51 (2018)

    Google Scholar 

  11. Zahir, F.; Rizwi, S.J.; Haq, S.K.; Khan, R.H.: Low dose mercury toxicity and human health. Environ. Toxicol. Pharmacol. 20, 351–360 (2005)

    Google Scholar 

  12. Holmes, P.; James, K.A.; Levy, L.S.: Is low-level environmental mercury exposure of concern to human health? Sci. Total Environ. 408, 171–182 (2009)

    Google Scholar 

  13. Yamini, Y.; Alizadeh, N.; Shamsipur, M.: Solid phase extraction and determination of ultra trace amounts of mercury(II) using octadecyl silica membrane disks modified by hexathia-18-crown-6-tetraone and cold vapour atomic absorption spectrometry. Anal. Chim. Acta 355, 69–74 (1997)

    Google Scholar 

  14. Kuswandi, B.; Nuriman, A.; Dam, H.H.; Reinhoudt, D.N.; Verboom, W.: Development of a disposable mercury ion-selective optode based on trityl-picolamide as ionophore. Anal. Chim. Acta 591, 208–213 (2007)

    Google Scholar 

  15. Fong, B.S.; Siu, T.S.; Lee, J.S.; Tam, S.: Determination of mercury in whole blood and urine by inductively coupled plasma mass spectrometry. J. Anal. Toxicol. 31, 281–287 (2007)

    Google Scholar 

  16. Ichinoki, S.; Kitahata, N.; Fujii, Y.: Selective determination of mercury(II) ion in water by solvent extraction followed by reversed-phase HPLC. J. Liq. Chromatogr. Relat. Technol. 27, 1785–1798 (2004)

    Google Scholar 

  17. Rastogi, L.; Sashidhar, R.B.; Karunasagar, D.; Arunachalam, J.: Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg2+ in aqueous system. Talanta 118, 111–117 (2014)

    Google Scholar 

  18. Stewart, M.E.; Anderton, C.R.; Thompson, L.B.; Maria, J.; Gray, S.K.; Rogers, J.A.; Nuzzo, R.G.: Nanostructured plasmonic sensors. Chem. Rev. 108, 494–521 (2008)

    Google Scholar 

  19. Yang, Y.-K.; Yook, K.-J.; Tae, J.: A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media. J. Am. Chem. Soc. 127, 16760–16761 (2005)

    Google Scholar 

  20. Zhu, Z.; Su, Y.; Li, J.; Li, D.; Zhang, J.; Song, S.; Zhao, Y.; Li, G.; Fan, C.: Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification. Anal. Chem. 81, 7660–7666 (2009)

    Google Scholar 

  21. Liu, J.; Lu, Y.: Rational design of turn-on allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity. Angew. Chem. Int. Ed. 46, 7587–7590 (2007)

    Google Scholar 

  22. Lu, H.; Tang, Y.; Xu, W.; Zhang, D.; Wang, S.; Zhu, D.: Highly selective fluorescence detection for mercury(II) ions in aqueous solution using water soluble conjugated polyelectrolytes. Macromol. Rapid Commun. 29, 1467–1471 (2008)

    Google Scholar 

  23. Awual, M.R.; Hasan, M.M.; Eldesoky, G.E.; Khaleque, M.A.; Rahman, M.M.; Naushad, M.: Facile mercury detection and removal from aqueous media involving ligand impregnated conjugate nanomaterials. Chem. Eng. J. 290, 243–251 (2016)

    Google Scholar 

  24. Abbas, K.; Znad, H.; Awual, M.R.: A ligand anchored conjugate adsorbent for effective mercury(II) detection and removal from aqueous media. Chem. Eng. J. 334, 432–443 (2018)

    Google Scholar 

  25. Awual, M.R.: Novel nanocomposite materials for efficient and selective mercury ions capturing from wastewater. Chem. Eng. J. 307, 456–465 (2017)

    Google Scholar 

  26. Awual, M.R.: An efficient composite material for selective lead(II) monitoring and removal from wastewater. J. Environ. Chem. Eng. 7, 103807 (2019)

    Google Scholar 

  27. Awual, M.R.: A facile composite material for enhanced cadmium(II) ion capturing from wastewater. J. Environ. Chem. Eng. 7, 103378 (2019)

    Google Scholar 

  28. Awual, M.R.; Hasan, M.M.: A ligand based innovative composite material for selective lead(II) capturing from wastewater. J. Mol. Liq. 294, 111679 (2019)

    Google Scholar 

  29. Farhadi, F.; Forough, M.; Molaei, R.; Hajizadeh, S.; Rafipour, A.: Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles. Sens. Actuators B. Chem. 161, 880–885 (2012)

    Google Scholar 

  30. Bothra, S.; Solanki, J.N.; Sahoo, S.K.: Functionalized silver nanoparticles as chemosensor for pH, Hg2+ and Fe3+ in aqueous medium. Sens. Actuators B. Chem. 188, 937–943 (2013)

    Google Scholar 

  31. Park, J.; Joo, J.; Kwon, S.G.; Jang, Y.; Hyeon, T.: Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 46, 4630–4660 (2007)

    Google Scholar 

  32. Khatoon, N.; Mazumder, J.A.; Sardar, M.: Biotechnological applications of green synthesized silver nanoparticles. J. Nanosci. Curr. Res. 2, 1000107 (2017)

    Google Scholar 

  33. Zaki, S.; El Kady, M.F.; Abd-El-Haleem, D.: Determination of the effective origin source for nanosilver particles produced by Escherichia coli strain S78 and its application as antimicrobial agent. Mater. Res. Bull. 47, 4286–4290 (2012)

    Google Scholar 

  34. Dubey, S.P.; Lahtinen, M.; Sillanpaa, M.: Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem. 45, 1065–1071 (2010)

    Google Scholar 

  35. Mock, J.J.; Barbic, M.; Smith, D.R.; Schultz, D.A.; Schultz, S.: Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 116, 6755–6759 (2002)

    Google Scholar 

  36. Huang, J.; Li, Q.; Sun, D.; Lu, Y.; Su, Y.; Yang, X.; Wang, H.; Wang, Y.; Shao, W.; He, N.: Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18, 105104 (2007)

    Google Scholar 

  37. Sathishkumar, M.; Sneha, K.; Yun, Y.-S.: Palladium nanocrystals synthesis using Curcuma longa tuber extract. Int. J. Mater. Sci. 4, 11–17 (2009)

    Google Scholar 

  38. Noruzi, M.; Zare, D.; Khoshnevisan, K.; Davoodi, D.: Rapid green synthesis of gold nanoparticles using Rosa hybrida petal extract at room temperature. Spectrochim. Acta A 79, 1461–1465 (2011)

    Google Scholar 

  39. Pimprikar, P.S.; Joshi, S.S.; Kumar, A.R.; Zinjarde, S.S.; Kulkarni, S.K.: Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica. Colloids Surf. B Biointerfaces 74, 309–316 (2009)

    Google Scholar 

  40. Alqadi, M.K.; Abo Noqtah, O.A.; Alzoubi, F.Y.; Alzouby, J.; Aljarrah, K.: pH effect on the aggregation of silver nanoparticles synthesized by chemical reduction. Mater. Sci. Pol. 32, 107–111 (2014)

    Google Scholar 

  41. Vanaja, M.; Annadurai, G.: Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl. Nanosci. 3, 217–223 (2012)

    Google Scholar 

  42. Khalil, M.M.H.; Ismail, E.H.; El-Baghdady, K.Z.; Mohamed, D.: Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab. J. Chem. 7, 1131–1139 (2014)

    Google Scholar 

  43. Salawu, O.A.; Chanbasha, B.; Zafarullah, K.; Alsharaa, A.; Siddiqui, Z.: Biogenic synthesis of silver nanoparticles, study of the effect of physicochemical parameters and application as nanosensor in the colorimetric detection of Hg2+ in water. Int. J. Environ. Anal. Chem. 96, 776–788 (2016)

    Google Scholar 

  44. Ibrahim, H.M.M.: Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Radiat. Res. Appl. Sci. 8, 265–275 (2015)

    Google Scholar 

  45. Makarov, V.V.; Love, A.J.; Sinitsyna, O.V.; Makarova, S.S.; Yaminsky, I.V.; Taliansky, M.E.; Kalinina, N.O.: “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat. 6, 35–44 (2014)

    Google Scholar 

  46. Ahmad, N.; Sharma, S.; Alam, M.K.; Singh, V.N.; Shamsi, S.F.; Mehta, B.R.; Fatma, A.: Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf. B Biointerfaces 81, 81–86 (2010)

    Google Scholar 

  47. Prathna, T.C.; Chandrasekaran, N.; Raichur, A.M.; Mukherjee, A.: Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids Surf. B Biointerfaces 82, 152–159 (2011)

    Google Scholar 

  48. Fayaz, A.M.; Balaji, K.; Kalaichelvan, P.T.; Venkatesan, R.: Fungal based synthesis of silver nanoparticles-an effect of temperature on the size of particles. Colloids Surf B Biointerfaces 74, 123–126 (2009)

    Google Scholar 

  49. Jiang, J.; Manolache, S.; Lee Wong, A.C.; Denes, F.S.: Plasma enhanced deposition of silver nanoparticles onto polymer and metal surfaces for the generation of antimicrobial characteristics. J. Appl. Polym. Sci. 93, 1411–1422 (2004)

    Google Scholar 

  50. Peterson, A.L.: The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939)

    MATH  Google Scholar 

  51. Gopinath, V.; MubarakAli, M.; Priyadarshini, S.; Priyadharsshini, N.M.; Thajudin, N.; Velusamy, P.: Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach. Colloid Surf. B Biointerfaces 96, 69–74 (2012)

    Google Scholar 

  52. Dhand, V.; Soumya, L.; Bharadwaj, S.; Chakra, S.; Deepika, B.; Sreedhar, B.: Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater. Sci. Eng. C 58, 36–43 (2016)

    Google Scholar 

  53. Henglein, A.: Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 89, 1861–1873 (1989)

    Google Scholar 

  54. de Cointet, C.; Mostafavi, M.; Khatouri, J.; Belloni, J.: Growth and reactivity of silver clusters in cyanide solution. J. Phys. Chem. B 101, 3512–3516 (1997)

    Google Scholar 

  55. Pradhan, N.; Pal, A.; Pal, T.: Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloids Surf. A Physicochem. Eng. Asp. 196, 247–257 (2002)

    Google Scholar 

  56. Lee, K.H.; Shin, M.C.; Lee, J.Y.: A kinetic study of the silver–mercury contact reaction. J. Mater. Sci. 21, 2430–2434 (1986)

    Google Scholar 

Download references

Acknowledgements

We thank the Department of Chemistry at King Fahd University of Petroleum and Minerals for providing the resources used for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sulayman A. Oladepo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 370 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aminu, A., Oladepo, S.A. Fast Orange Peel-Mediated Synthesis of Silver Nanoparticles and Use as Visual Colorimetric Sensor in the Selective Detection of Mercury(II) Ions. Arab J Sci Eng 46, 5477–5487 (2021). https://doi.org/10.1007/s13369-020-05030-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05030-3

Keywords

Navigation