Skip to main content
Log in

A Statistical Method to Predict the Hardness and Grain Size After Equal Channel Angular Pressing of AA-6063 with Intermediate Annealing

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Fine-grained metals and alloys with a homogeneous microstructure can be produced in bulk quantities using the equal channel angular pressing (ECAP) technique. In the ECAP process, improvements in desired properties and grain refinement depend on die geometry, number of passes, strain per pass, plunger speed, friction conditions, processing temperature, etc. In the present study, Al-6063 alloy cylindrical samples are processed by ECAP varying three critical parameters: die channel angle, number of passes, and intermediate processing temperature. Optical microscopy, electron back scattered diffraction, scanning electron microscopy, and transmission electron microscopy techniques are used for observing grain size and refinement, deformation patterns, the formation of precipitates etc. The main consequence of the thermomechanical effect is a reduction in grain size from micro to nano is observed. This transformation makes the material better, which shows outstanding promises on ECAP results. The developed material can be highly applicable in research as well as in the automotive industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wang, C.P.; Li, F.G.; Wang, L.; Qiao, H.J.: Review on modified and novel techniques of severe plastic deformation. Sci. China Technol. Sci. 55, 2377–2390, 2012. https://doi.org/10.1007/s11431-012-4954-y.

    Article  Google Scholar 

  2. Kapoor, R.: Severe plastic deformation of materials. In: Tyagi, A.K., Banerjee, S. (eds.) Materials Under Extreme Conditions (Recent Trends and Future Prospects), Chapter 20, pp. 717–754. Elsevier, Amsterdam (2017)

    Chapter  Google Scholar 

  3. Kadiyan, S.; Dehiya, B.S.: Evaluating the influence of various routes on micro-structure and mechanical properties of AA-6063 after equal channel angular pressing. Mater. Res. Express 6(8), 0865f9, 2019. https://doi.org/10.1088/2053-1591/ab2618.

    Article  Google Scholar 

  4. Fatemi-Varzaneh, S.M.; Zarei-Hanzaki, A.: Accumulative back extrusion (ABE) processing as a novel bulk deformation method. Mater. Sci. Eng. A 504(1–2), 104–106, 2009. https://doi.org/10.1016/j.msea.2008.10.027.

    Article  Google Scholar 

  5. Huang, J.; Zhu, Y.T.; Alexander, D.J.; Liao, X.; Lowe, T.C.; Asaro, R.J.: Development of repetitive corrugation and straightening. Mater. Sci. Eng. A 371(1–2), 35–39, 2004. https://doi.org/10.1016/S0921-5093(03)00114-X.

    Article  Google Scholar 

  6. Jahedi, M.; Paydar, M.H.: Study on the feasibility of the torsion extrusion (TE) process as a severe plastic deformation method for consolidation of Al powder. Mater. Sci. Eng. A 527(20), 5273–5279, 2010. https://doi.org/10.1016/j.msea.2010.04.088.

    Article  Google Scholar 

  7. Segal, V.M.: Materials processing by simple shear. Mater. Sci. Eng. A 197(2), 157–164, 1995. https://doi.org/10.1016/0921-5093(95)09705-8.

    Article  Google Scholar 

  8. Valiev, R.Z.; Langdon, T.G.: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51, 881–981, 2006. https://doi.org/10.1016/j.pmatsci.2006.02.003.

    Article  Google Scholar 

  9. Ye, R.: Lapovok, The role of back-pressure in equal channel angular extrusion. J. Mater. Sci. 40, 341–346, 2005. https://doi.org/10.1007/s10853-005-6088-0.

    Article  Google Scholar 

  10. Alah, S.; Tiji, N.; Gholipour, H.; Djavanroodi, F.: Modeling of equal channel forward extrusion force using response surface approach. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 232(4), 713–719, 2016. https://doi.org/10.1177/0954405416654088.

    Article  Google Scholar 

  11. Cabibbo, M.: A TEM Kikuchi pattern study of ECAP AA1200 via routes A, C, BC. Mater. Charact. 61(6), 613–625, 2010. https://doi.org/10.1016/j.matchar.2010.03.007.

    Article  Google Scholar 

  12. Kadiyan, S.; Dehiya, B.: Importance of ECAP die design for producing improved hardness and ultra fine grains of aluminum alloy-6xxx series. i-Manager’s J. Future Eng. Technol. 13(1), 30–35, 2017. https://doi.org/10.26634/jfet.13.1.13760.

    Article  Google Scholar 

  13. Kadiyan, S.; Dehiya, B.S.: Effects of severe plastic deformation by ECAP on the microstructure and mechanical properties of a commercial copper alloy. Mater. Res. Express 6(11), 116570, 2019. https://doi.org/10.1088/2053-1591/ab4a44.

    Article  Google Scholar 

  14. Djavanroodi, F.; Ebrahimi, M.; Rajabifar, B.; Akramizadeh, S.: Fatigue design factors for ECAPed materials. Mater. Sci. Eng. A 528(2), 745–750, 2010. https://doi.org/10.1016/j.msea.2010.09.080.

    Article  Google Scholar 

  15. Lefstad, M.; Pedersen, K.; Dumoulin, S.: Up-scaled equal channel angular pressing of AA6060 and subsequent mechanical properties. Mater. Sci. Eng. A 535, 235–240, 2012. https://doi.org/10.1016/j.msea.2011.12.073.

    Article  Google Scholar 

  16. Ramesh Kumar, S.; Gudimetla, K.; Mohanlal, S.; Ravisankar, B.: Effect of mechanically alloyed graphene-reinforced aluminium by equal channel angular pressing (ECAP). Trans. Indian Inst. Met. 72(6), 1437–1441, 2019. https://doi.org/10.1007/s12666-019-01715-y.

    Article  Google Scholar 

  17. Ebrahimi, M.; Pashmforoush, F.; Gode, C.: Evaluating influence degree of equal-channel angular pressing parameters based on finite element analysis and response surface methodology. J. Braz. Soc. Mech. Sci. Eng., 2019. https://doi.org/10.1007/s40430-019-1597-y.

    Article  Google Scholar 

  18. Khamei, A.A.; Dehghani, K.: Effects of strain rate and temperature on hot tensile deformation of severe plastic deformed 6061 aluminum alloy. Mater. Sci. Eng. A., 2015. https://doi.org/10.1016/j.msea.2014.12.081.

    Article  Google Scholar 

  19. Goyal, A.; Garg, R.K.: Mechanical and microstructural behaviour of Al–Mg4.2 alloy friction stir butt welds. Mater. Res. Express 6(5), 056514, 2012. https://doi.org/10.1088/2053-1591/ab00c2.

    Article  Google Scholar 

  20. Dehghani, A.; Bakhshi, S.; Kalayeh, K.: Hot and cold tensile behavior of Al 6061 produced by equal channel angular pressing and subsequent cold rolling. Iran. J. Mater. Form. 2(1), 30–42, 2015. https://doi.org/10.22099/ijmf.2015.2913.

    Article  Google Scholar 

  21. Levitasetal, V.; Roy, A.M.; Preston, D.L.: Multiple twinning and variant-variant transformations in martensite: phase-field approach. Phys. Rev. B 88, 054113, 2013. https://doi.org/10.1103/PhysRevB.88.054113.

    Article  Google Scholar 

  22. Ghangas, G.; Singhal, S.: Modelling and optimization of process parameters for friction stir welding of armor alloy using RSM and GRA-PCA approach. Mater. Res. Express 6(2), 026553, 2019. https://doi.org/10.1088/2053-1591/aaed9b.

    Article  Google Scholar 

  23. Goyal, A.; Garg, R.K.: Establishing mathematical relationships to study tensile behavior of friction stir welded AA5086-H32 aluminium alloy joints. Silicon 11(1), 51–65, 2018. https://doi.org/10.1007/s12633-018-9858-4.

    Article  Google Scholar 

  24. Chari, R.N.; Kami, A.; Dariani, B.M.: Modeling and optimization of equivalent plastic strain in equal-channel angular rolling using response surface methodology. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 229(11), 1963–1975, 2015. https://doi.org/10.1177/0954405414542855.

    Article  Google Scholar 

  25. Sabirov, I.; Perez-Prado, M.T.; Murashkin, M.; Molina-Aldareguia, J.M.; Bobruk, E.V.; Yunusova, N.F.; Valiev, R.Z.: Application of equal channel angular pressing with parallel channels for grain refinement in aluminium alloys and its effect on deformation behavior. Int. J. Mater. Form. 3(1), 411–414, 2010. https://doi.org/10.1177/0954405414542855.

    Article  Google Scholar 

  26. Mukhopadhyay, P.: Alloy designation, processing, and use of AA6XXX series aluminium alloys. ISRN Metall. Article No. 165082, pp. 1–15 (2012)

  27. Totten, G.E.; Tiryakioglu, M.; Kessler, O.: Encyclopedia of Aluminum and Its Alloys. CRC Press, Boca Raton (2018)

    Book  Google Scholar 

  28. Xu, C.; Száraz, Z.; Trojanová, Z.; Lukac, P.; Langdon, T.G.: Evaluating plastic anisotropy in two aluminum alloys processed by equal-channel angular pressing. Mater. Sci. Eng. A 497(1–2), 206–211, 2008. https://doi.org/10.1016/j.msea.2008.06.045.

    Article  Google Scholar 

  29. Lv, X.; Wu, C.S.; Yang, C.; Padhy, G.K.: Weld microstructure and mechanical properties in ultrasonic enhanced friction stir welding of Al alloy to Mg alloy. J. Mater. Process. Technol. 254, 145–157, 2018. https://doi.org/10.1016/j.jmatprotec.2017.11.031.

    Article  Google Scholar 

  30. Cerri, E.; De Marco, P.P.; Leo, P.: FEM and metallurgical analysis of modified 6082 aluminium alloys processed by multipass ECAP: influence of material properties and different process settings on induced plastic strain. J. Mater. Process. Technol. 209(3), 1550–1564, 2009. https://doi.org/10.1016/j.jmatprotec.2008.04.013.

    Article  Google Scholar 

  31. Li, H.; Li, S.; Zhang, D.: On the selection of outlet channel length and billet length in equal channel angular extrusion. Comput. Mater. Sci. 49(2), 293–298, 2010. https://doi.org/10.1016/j.commatsci.2010.05.009.

    Article  MathSciNet  Google Scholar 

  32. Salcedo, D.; Luis, C.J.; León, J.; Puertas, I.; Fuertes, J.P.; Luri, R.: Simulation and analysis of isothermal forging of AA6063 obtained from material processed by equal channel angular pressing severe plastic deformation. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 229(5), 727–743, 2015. https://doi.org/10.1177/0954405414532628.

    Article  Google Scholar 

  33. Agwa, M.A.; Ali, M.N.; Al-Shorbagy, A.E.: Optimum processing parameters for equal channel angular pressing. Mech. Mater. 100, 1–11, 2016. https://doi.org/10.1016/j.mechmat.2016.06.003.

    Article  Google Scholar 

  34. Vinogradov, A.; Estrin, Y.: Analytical and numerical approaches to modelling severe plastic deformation. Prog. Mater. Sci. 95, 172–242, 2018. https://doi.org/10.1016/j.pmatsci.2018.02.001.

    Article  Google Scholar 

  35. Karon, M.; Kopysc, A.; Adamiak, M.; Konieczny, J.: Microstructure and mechanical properties of the annealed 6060 aluminium alloy processed by ECAP method. Arch. Mater. Sci. Eng. 80(1), 31–36, 2016. https://doi.org/10.5604/18972764.1229616.

    Article  Google Scholar 

  36. Sahai, A.; Raj, K.H.; Gupta, N.K.: Mechanical behaviour and surface profile analysis of Al6061 alloy processed by equal channel angular extrusion. Procedia Eng. 173, 956–963, 2017. https://doi.org/10.1016/j.proeng.2016.12.155.

    Article  Google Scholar 

  37. Ghalehbandi, S.M.; FallahiArezoodar, A.; Hosseini-Toudeshky, H.: Influence of aging on mechanical properties of equal channel angular pressed aluminum alloy 7075. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 231(10), 1803–1811, 2015. https://doi.org/10.1177/0954405415612370.

    Article  Google Scholar 

  38. Zhang, Z.; Wang, J.; Zhang, Q.; Zhang, S.; Shi, Q.; Qi, H.: Research on grain refinement mechanism of 6061 aluminum alloy processed by combined SPD methods of ECAP and MAC. Materials 11(7), 1246, 2018. https://doi.org/10.3390/ma11071246.

    Article  Google Scholar 

  39. Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M.: Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 4th edn Wiley, New York (2016)

    MATH  Google Scholar 

  40. Hill, W.J.; Hunter, W.G.: A review of response surface methodology: a literature survey. Am. Soc. Qual. 8(4), 571–590, 2019. https://doi.org/10.2307/1266632.

    Article  MathSciNet  Google Scholar 

  41. Gholinia, A.; Prangnell, P.B.; Markushev, M.V.: Effect of strain path on the development of deformation structures in severely deformed aluminium alloys processed by ECAE. Acta Mater. 48(5), 1115–1130, 2000. https://doi.org/10.1016/S1359-6454(99)00388-2.

    Article  Google Scholar 

  42. Kim, K.J.; Yang, D.Y.; Yoon, J.W.: Investigation of microstructure characteristics of commercially pure aluminum during equal channel angular extrusion. Mater. Sci. Eng. A 485(1–2), 621–626, 2008. https://doi.org/10.1016/j.msea.2007.08.038.

    Article  Google Scholar 

  43. Cabibbo, M.: Microstructure strengthening mechanisms in different equal channel angular pressed aluminum alloys. Mater. Sci. Eng. A 560, 413–432, 2013. https://doi.org/10.1016/j.msea.2012.09.086.

    Article  Google Scholar 

  44. Djavanroodi, F.; Ebrahimi, M.: Effect of die parameters and material properties in ECAP with parallel channels. Mater. Sci. Eng. A 527(29–30), 7593–7599, 2010. https://doi.org/10.1016/j.msea.2010.08.022.

    Article  Google Scholar 

  45. Cabibbo, M.; Evangelista, E.; Latini, V.: Thermal stability study on two aluminum alloys. J. Mater. Sci. 9, 5659–5667, 2004. https://doi.org/10.1023/B:JMSC.0000040073.78798.d4.

    Article  Google Scholar 

  46. Morozova, A.; Kaibyshev, R.: Grain refinement and strengthening of a Cu–0.1Cr–0.06Zr alloy subjected to equal channel angular pressing. Philos. Mag. 97(24), 1–24, 2017. https://doi.org/10.1080/14786435.2017.1324649.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kadiyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadiyan, S., Dehiya, B.S., Garg, R.K. et al. A Statistical Method to Predict the Hardness and Grain Size After Equal Channel Angular Pressing of AA-6063 with Intermediate Annealing. Arab J Sci Eng 46, 2055–2070 (2021). https://doi.org/10.1007/s13369-020-04999-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04999-1

Keywords

Navigation