Skip to main content
Log in

Optimization of Lead (II) Adsorption onto Cross-Linked Polycarboxylate-Based Adsorbent by Response Surface Methodology

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Due to the harmful effects to environment and public health, lead has to be removed from wastewater. The novelty of this study is the investigation of the adsorption of lead by a cross-linked polycarboxylate-based adsorbent synthesized, the characterization of adsorbent with FTIR, SEM–EDS, XRD and the optimization of the effective parameters such as initial lead concentration, pH and temperature by response surface methodology. In here, Box–Behnken experimental design was applied by using ANOVA-supported Design Expert software. It was statistically confirmed that the surface representing the adsorption process conforms to the reduced cubic model. The common effects of the parameters were determined, and the equation was obtained to predict lead removal under the desired conditions. It was understood that both Langmuir and Freundlich isotherms can be used to describe the adsorption data. The negative free energy of adsorption process indicated the spontaneous reaction. The values of enthalpy and entropy were determined as − 12.57 kJ mol−1 and − 0.036 kJ mol−1 K−1, respectively. Maximum lead removal reached to 79.7% at the initial concentration of 480.7 ppm, pH 8 and 25 °C. The selectivity of adsorbent in both lead- and cadmium-containing aqueous solution was also studied. Adsorption was found to be in favor of metal ions with higher initial concentration, and lead was adsorbed more by the effect of electronegativity when the concentration of two ions was equal. Desorption experiments of lead showed that the adsorption process was highly chemical and less physical, and only the physical part of it was desorbed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Material

Yes.

References

  1. Basheer, A.A.; Ali, I.: Stereoselective uptake and degradation of (±)-o, p-DDD pesticide stereomers in water-sediment system. Chirality 30, 1088–1095 (2018)

    Google Scholar 

  2. Al-Shaalan, N.H.; Ali, I.; Alothman, Z.A.; Al-Wahaibi, L.H.; Alabdulmonem, H.: High performance removal and simulation studies of diuron pesticide in water on MWCNTs. J. Mol. Liq. (2019). https://doi.org/10.1016/j.molliq.2019.111039

    Article  Google Scholar 

  3. Ali, I.; Alothman, Z.A.; Alwarthan, A.: Supra molecular mechanism of the removal of 17-β-estradiol endocrine disturbing pollutant from water on functionalized iron nano particles. J. Mol. Liq. 241, 123–129 (2017)

    Google Scholar 

  4. Basheer, A.A.: Chemical chiral pollution: impact on the society and science and need of the regulations in the 21st century. Chirality 30, 402–406 (2018)

    Google Scholar 

  5. Basheer, A.A.: New generation nano-adsorbents for the removal of emerging contaminants in water. J. Mol. Liq. 261, 583–593 (2018)

    Google Scholar 

  6. Ali, I.; Jain, C.K.: Groundwater contamination and health hazards by some of the most commonly used pesticides. Curr. Sci. 75(10), 1011–1014 (1998)

    Google Scholar 

  7. Ali, I.; Gupta, V.K.; Aboul-Enein, H.Y.: Metal ion speciation and capillary electrophoresis: application in the new millennium. Electrophoresis 26, 3988–4002 (2005)

    Google Scholar 

  8. Badruddoza, A.Z.M.; Shawon, Z.B.Z.; Tay, W.J.D.; Hidajat, K.; Uddin, M.S.: Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater. Carbohydr. Polym. 91(1), 322–332 (2013)

    Google Scholar 

  9. Fu, F.; Wang, Q.: Removal of heavy metal ions from wastewaters: a review. J. Environ. Manag. 92(3), 407–418 (2011)

    Google Scholar 

  10. Erdem, M.; Özverdi, A.: Lead adsorption from aqueous solution onto siderite. Sep. Purif. Technol. 42(3), 259–264 (2005)

    Google Scholar 

  11. Ali, I.; Khan, T.A.; Hussain, I.: Treatment and remediation methods for arsenic removal from the ground water. Int. J. Environ. Eng. (2011). https://doi.org/10.1504/IJEE.2011.037873

    Article  Google Scholar 

  12. An, H.K.; Park, B.Y.; Kim, D.S.: Crab shell for the removal of heavy metals from aqueous solution. Water Res. 35(15), 3551–3556 (2001)

    Google Scholar 

  13. Li, Y.H.; Wang, S.; Wei, J.; Zhang, X.; Xu, C.; Luan, Z.; Wu, D.; Wei, B.: Water treatment materials based on carbon nanotubes. Chem. Phys. Lett. 357, 263–266 (2002)

    Google Scholar 

  14. Sekar, M.; Sakthi, V.; Rengaraj, S.: Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell. J. Colloid Interface Sci. 279(2), 307–313 (2004)

    Google Scholar 

  15. Amer, M.W.; Khalili, F.I.; Awwad, A.M.: Adsorption of lead, zinc and cadmium ions on polyphosphate-modified kaolinite clay. J. Environ. Chem. Ecotoxicol. 2(1), 1–8 (2010)

    Google Scholar 

  16. Wang, J.; Chen, C.: Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol. Adv. 24(5), 427–451 (2006)

    Google Scholar 

  17. Turkyilmaz, H.; Kartal, T.; Yildiz, S.Y.: Optimization of lead adsorption of mordenite by response surface methodology: characterization and modification. J. Environ. Health Sci. Eng. (2014). https://doi.org/10.1186/2052-336X-12-5

    Article  Google Scholar 

  18. Bhat, A.; Megeri, G.B.; Thomas, C.; Bhargava, H.; Jeevitha, C.; Chandrashekar, S.; Madhu, G.M.: Adsorption and optimization studies of lead from aqueous solution using γ-Alumina. J. Environ. Chem. Eng. 3(1), 30–39 (2015)

    Google Scholar 

  19. Lugo-Lugo, V.; Hernandez-Lopez, S.; Barrera-Diaz, C.; Urena-Nunez, F.; Bilyeu, B.: A comparative study of natural, formaldehyde-treated and copolymer-grafted orange peel for Pb(II) adsorption under batch and continuous mode. J. Hazard. Mater. 161(2–3), 1255–1264 (2009)

    Google Scholar 

  20. Li, M.; Liu, J.; Han, W.: Recycling and management of waste lead-acid batteries: a mini-review. Waste Manag. Res. 34(4), 298–306 (2016)

    MathSciNet  Google Scholar 

  21. Soltani, R.D.C.; Khorramabadi, G.S.; Khataee, A.R.; Jorfi, S.: Silica nanopowders/alginate composite for adsorption of lead (II) ions in aqueous solutions. J. Taiwan Inst. Chem. Eng. 45(3), 973–980 (2014)

    Google Scholar 

  22. Yao, Q.; Xie, J.; Liu, J.; Kang, H.; Liu, Y.: Adsorption of lead ions using a modified lignin hydrogel. J. Polym. Res. 21(465), 1–16 (2014)

    Google Scholar 

  23. Song, M.; Wei, Y.; Yu, L.: The application of prepared porous carbon materials: effect of different components on the heavy metal adsorption. Waste Manag. Res. 34(6), 534–541 (2016)

    Google Scholar 

  24. Ali, I.; Basheer, A.A.; Mbianda, X.Y.; Burakov, A.; Galunin, E.; Burakova, I.; Mkrtchyan, E.; Tkachev, A.; Grachev, V.: Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environ. Int. 127, 160–180 (2019)

    Google Scholar 

  25. Ali, I.; Aboul-Enein, H.Y.: Speciation of metal ions by capillary electrophoresis. Crit. Rev. Anal. Chem. 32(4), 337–350 (2002)

    Google Scholar 

  26. Yan, H.; Dai, J.; Yang, Z.; Yang, H.; Cheng, R.: Enhanced and selective adsorption of copper(II) ions on surface carboxymethylated chitosan hydrogel beads. Chem. Eng. J. 174(2–3), 586–594 (2011)

    Google Scholar 

  27. Saleh, T.A.; Gupta, V.K.; Al-Saadi, A.A.: Adsorption of lead ions from aqueous solution using porous carbon derived from rubber tires: experimental and computational study. J. Colloid Interface Sci. 396, 264–269 (2013)

    Google Scholar 

  28. Ge, H.; Hu, T.; Chen, X.: Selective adsorption of lead on grafted and crosslinked chitosan nanoparticles prepared by using Pb2+ as template. J. Hazard. Mater. 308, 225–232 (2016)

    Google Scholar 

  29. Crini, G.; Lichtfouse, E.; Wilson, L.D.; Morin-Crini, N.: Conventional and non-conventional adsorbents for wastewater treatment. Environ. Chem. Lett. 17, 195–213 (2019)

    Google Scholar 

  30. Mahmud, H.N.M.E.; Huq, A.K.O.; Binti Yahya, R.: The removal of heavy metal ions from wastewater/aqueous solution using polypyrrole-based adsorbents: a review. RSC Adv 6, 14778–14791 (2016)

    Google Scholar 

  31. Ravikumar, K.; Pakshirajan, K.; Swaminathan, T.; Balu, K.: Optimization of batch process parameters using response surface methodology for dye removal by a novel adsorbent. Chem. Eng. J. 105(3), 131–138 (2005)

    Google Scholar 

  32. Sahan, T.; Ozturk, D.: Investigation of Pb(II) adsorption onto pumice samples: application of optimization method based on fractional factorial design and response surface methodology. Clean Technol. Environ. Policy 16, 819–831 (2014)

    Google Scholar 

  33. Preetha, B.; Viruthagiri, T.: Application of response surface methodology for the biosorption of copper using Rhizopus arrhizus. J. Hazard. Mater. 143(1–2), 506–510 (2007)

    Google Scholar 

  34. Wang, X.; Yang, G.; Li, F.; Feng, Y.; Ren, G.: Response surface optimization of methane potentials in anaerobic co-digestion of multiple substrates: dairy, chicken manure and wheat straw. Waste Manag. Res. 31(1), 60–66 (2013)

    Google Scholar 

  35. Zhang, B.; Cui, Y.; Yin, G.; Li, X.: Adsorption of copper (II) and lead (II) Ions onto cottonseed protein-PAA hydrogel composite. Polym. Plast. Technol. Eng. 51(6), 612–619 (2012)

    Google Scholar 

  36. Özdemir, E.; Duranoğlu, D.; Beker, Ü.; Avcı, A.Ö.: Process optimization for Cr(VI) adsorption onto activated carbons by experimental design. Chem. Eng. J. 172(1), 207–218 (2011)

    Google Scholar 

  37. Anirudhan, T.S.; Divya, L.; Suchithra, P.S.: Kinetic and equilibrium characterization of uranium(VI) adsorption onto carboxylate-functionalized poly(hydroxyethylmethacrylate)-grafted lignocellulosics. J. Environ. Manag. 90(1), 549–560 (2009)

    Google Scholar 

  38. Amorim, D.J.; Rezende, H.C.; Oliveira, E.L.; Almeida, I.L.S.; Coelho, N.M.M.; Matos, T.N.; Araujo, C.S.T.: Characterization of Pequi (Caryocar brasiliense) shells and evaluation of their potential for the adsorption of PbII ions in aqueous systems. J. Braz. Chem. Soc. 27(3), 616–623 (2016)

    Google Scholar 

  39. Ribeiro, R.F.L.; Soares, V.C.; Costa, L.M.; Nascentes, C.C.: Efficient removal of Cd2+ from aqueous solutions using by-product of biodiesel production. J. Hazard. Mater. 237–238, 170–179 (2012)

    Google Scholar 

  40. Meitei, M.D.; Prasad, M.N.V.: Lead (II) and cadmium (II) biosorption on Spirodela polyrhiza (L.) Schleiden biomass. J. Environ. Chem. Eng. 1(3), 200–207 (2013)

    Google Scholar 

  41. Liu, Y.; Xu, L.; Liu, J.; Liu, X.; Chen, C.; Li, G.; Meng, Y.: Graphene oxides cross-linked with hyperbranched polyethylenimines: preparation, characterization and their potential as recyclable and highly efficient adsorption materials for lead (II) ions. Chem. Eng. J. 285, 698–708 (2016)

    Google Scholar 

  42. Wang, H.; Zhou, A.; Peng, F.; Yu, H.; Yang, J.: Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb(II). J. Colloid Interface Sci. 316(2), 277–283 (2007)

    Google Scholar 

  43. Arulkumar, M.; Sathishkumar, P.; Palvannan, T.: Optimization of Orange G dye adsorption by activated carbon of Thespesia populnea pods using response surface methodology. J. Hazard. Mater. 186(1), 827–834 (2011)

    Google Scholar 

  44. Ali, I.; Alharbi, O.M.L.; Alothman, Z.A.; Al-Mohaimeed, A.M.; Alwarthan, A.: Modeling of fenuron pesticide adsorption on CNTs for mechanistic insight and removal in water. Environ. Res. 170, 389–397 (2019)

    Google Scholar 

  45. Nodeh, H.R.; Ibrahim, W.A.W.; Ali, I.; Sanagi, M.M.: Development of magnetic graphene oxide adsorbent for the removal and preconcentration of As(III) and As(V) species from environmental water samples. Environ. Sci. Pollut. Res. 23, 9759–9773 (2016)

    Google Scholar 

  46. Ali, I.: Microwave assisted economic synthesis of multi walled carbon nanotubes for arsenic species removal in water: batch and column operations. J. Mol. Liq. 271, 677–685 (2018)

    Google Scholar 

  47. Ali, I.; Alharbi, O.M.L.; Alothman, Z.A.; Alwarthan, A.: Facile and eco-friendly synthesis of functionalized iron nanoparticles for cyanazine removal in water. Colloid Surf. B 171, 606–613 (2018)

    Google Scholar 

  48. Kamga, F.T.: Modeling adsorption mechanism of paraquat onto Ayous (Triplochiton scleroxylon) wood sawdust. Appl. Water Sci. (2019). https://doi.org/10.1007/s13201-018-0879-3

    Article  Google Scholar 

  49. Ali, I.; Alharbi, O.M.L.; Alothman, Z.A.; Badjah, A.Y.: Kinetics, thermodynamics, and modeling of amido black dye photodegradation in water using Co/TiO2 nanoparticles. Photochem. Photobiol. 94, 935–941 (2018)

    Google Scholar 

  50. Ali, I.; Alharbi, O.M.L.; Alothman, Z.A.; Alwarthan, A.; Al-Mohaimeed, A.M.: Preparation of a carboxymethylcellulose-iron composite for uptake of atorvastatin in water. Int. J. Biol. Macromol. 132, 244–253 (2019)

    Google Scholar 

  51. Ali, I.; Burakov, A.E.; Melezhik, A.V.; Babkin, A.V.; Burakova, I.V.; Neskomornaya, E.A.; Galunin, E.V.; Tkachev, A.G.; Kuznetsov, D.V.: Removal of copper(II) and zinc(II) ions in water on a newly synthesized polyhydroquinone/graphene nanocomposite material: kinetics, thermodynamics and mechanism. Chem. Sel 4, 12708–12718 (2019)

    Google Scholar 

  52. Chaleshtori, A.A.N.; Meghadddam, F.M.; Sadeghi, M.M.; Rahimi, R.R.; Hemati, S.; Ahmadi, A.A.: Removal of acid red 18 (azo-dye) from aqueous solution by adsorption onto activated charcoal prepared from almond shell. J. Environ. Sci. Manag. 20, 9–16 (2017)

    Google Scholar 

  53. Das, B.; Mondal, N.K.; Bhaumik, R.; Roy, P.: Insight into adsorption equilibrium, kinetics and thermodynamics of lead onto alluvial soil. Int. J. Environ. Sci. Technol. 11, 1101–1114 (2014)

    Google Scholar 

  54. Senthilkumar, P.; Ramalingam, S.; Sathyaselvabala, V.; Dinesh Kirupha, S.; Sivanesan, S.: Removal of copper(II) ions from aqueous solution by adsorption using cashew nut shell. Desalination 266(1–3), 63–71 (2011)

    Google Scholar 

  55. Rahimi, S.; Moattari, R.M.; Rajabi, L.; Derakhshan, A.A.; Keyhani, M.: Iron oxide/hydroxide (α, γ-FeOOH) nanoparticles as high potential adsorbents for lead removal from polluted aquatic media. J. Ind. Eng. Chem. 23, 33–43 (2015)

    Google Scholar 

  56. Agarwal, S.; Tyagi, I.; Gupta, V.K.; Bagheri, A.R.; Ghaedi, M.; Asfaram, A.; Hajati, S.; Bazrafshan, A.A.: Rapid adsorption of ternary dye pollutants onto copper (I) oxide nanoparticle loaded on activated carbon: experimental optimization via response surface methodology. J. Environ. Chem. Eng. 4(2), 1769–1779 (2016)

    Google Scholar 

  57. Zulkali, M.M.D.; Ahmad, A.L.; Norulakmal, N.H.: Oryza sativa L. husk as heavy metal adsorbent: optimization with lead as model solution. Bioresour. Technol. 97(1), 21–25 (2006)

    Google Scholar 

  58. Sedighi, M.; Ghasemi, M.; Hassan, S.H.A.; Daud, W.R.W.; Ismail, M.; Abdallah, E.: Process optimization of batch biosorption of lead using Lactobacillius bulgaricus in an aqueous phase system using response surface methodology. World J. Microbiol. Biotechnol. 28, 2047–2055 (2012)

    Google Scholar 

  59. Murugesan, A.; Vidhyadevi, T.; Kalaivani, S.S.; Thiruvengadaravi, K.V.; Ravikumar, L.; Anuradha, C.D.; Sivanesan, S.: Modelling of lead(II) ion adsorption onto poly(thiourea imine) functionalized chelating resin using response surface methodology (RSM). J. Water Process Eng. 3, 132–143 (2014)

    Google Scholar 

  60. Ibrahim, M.N.M.; Ngah, W.S.W.; Norliyana, M.S.; Daud, W.R.W.; Rafatullah, M.; Sulaiman, O.; Hashim, R.: A novel agricultural waste adsorbent for the removal of lead (II) ions from aqueous solutions. J. Hazard. Mater. 182(1–3), 377–385 (2010)

    Google Scholar 

  61. Huang, M.R.; Peng, Q.Y.; Li, X.G.: Rapid and effective adsorption of lead ions on fine poly(phenylenediamine) microparticles. Chem. Eur. J. 12(16), 4341–4350 (2006)

    Google Scholar 

  62. Sonmezay, A.; Oncel, M.S.; Bektas, N.: Adsorption of lead and cadmium ions from aqueous solutions using manganoxide minerals. Trans. Nonferrous Met. Soc. China 22(12), 3131–3139 (2012)

    Google Scholar 

  63. Fan, T.; Liu, Y.; Feng, B.; Zeng, G.; Yang, C.; Zhou, M.; Zhou, H.; Tan, Z.; Wang, X.: Biosorption of cadmium(II), zinc(II) and lead(II) by Penicillium simplicissimum: isotherms, kinetics and thermodynamics. J. Hazard. Mater. 160(2–3), 655–661 (2008)

    Google Scholar 

  64. Sheela, T.; Nayaka, Y.A.: Kinetics and thermodynamics of cadmium and lead ions adsorption on NiO nanoparticles. Chem. Eng. J. 191, 123–131 (2012)

    Google Scholar 

Download references

Acknowledgements

This study was conducted at the Department of Chemical Engineering in Suleyman Demirel University. The authors wish to thank to Innovative Technologies Application and Research Center (YETEM) for the analyses of FTIR, SEM and XRD.

Funding

This research did not receive any specific Grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

RT (25%); SY (25%); SGE (corresponding author-50%).

Corresponding author

Correspondence to Sıddıka Gamze Erzengin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taşdemir, R., Yiğitarslan, S. & Erzengin, S.G. Optimization of Lead (II) Adsorption onto Cross-Linked Polycarboxylate-Based Adsorbent by Response Surface Methodology. Arab J Sci Eng 46, 6287–6301 (2021). https://doi.org/10.1007/s13369-020-05029-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05029-w

Keywords

Navigation