Skip to main content
Log in

Squeezing Flow of Carbon Nanotubes-Based Nanofluid in Channel Considering Temperature-Dependent Viscosity: A Numerical Approach

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this article, we have considered unsteady squeezing flow between two infinite parallel plates. The time-dependent magnetic field normal to the plate surface is taken into consideration with fluid thermal radiations. Fluid dynamic viscosity is sensitive to temperature. Governing partial differential equations (PDE) are transformed into ordinary differential equations (ODE) by introducing suitable similarity transformations. The reduced highly nonlinear ordinary differential equations are then solved numerically with the help of the Keller box method. Numerical and graphical results depict that the velocity profile decreases with rising values of variable viscosity parameter, while fluid temperature distribution increases. Results for local skin friction and Nusselt numbers are also computed. Numeric shows that skin friction coefficient, as well as the Nusselt number, decreases with variable viscosity parameter. The heat transfer rate declines with the radiation parameter but escalates for the squeezing parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

\( u, v \) :

Velocities along x and y-axis, respectively

\( \rho_{nf} , \mu_{nf} \) :

Effective density and dynamic viscosity of nanofluid

\( p \) :

Fluid pressure

\( B\left( t \right), \sigma \) :

Magnetic field and electric charge density, respectively

\( \sigma_{e} \) :

Stefan–Boltzmann constant

\( C_{p} \) :

Heat capacitance

\( S \) :

Squeezing parameter

\( T, q_{r} \) :

Fluid temperature and radiative heat flux, respectively

\( T_{c} , T_{h} \) :

The temperature at center and distance h(t), respectively

\( f, \theta \) :

Dimensionless velocity and temperature, respectively

\( \theta_{r} \) :

Variable viscosity parameter

\( K_{nf} , \alpha_{nf} \) :

Thermal conductivity and diffusivity of nanofluid

\( \varphi \) :

The volume fraction of CNT

\( Rd \) :

Thermal radiation parameter

\( \beta_{R} \) :

Mean absorption constant

\( Ha, Pr \) :

Hartmann number and Prandtl number, respectively

References

  1. Stefan, J.: Versuche Über Die Scheinbare Adhäsion. Ann. Phys. 230(2), 316–318 (1875)

    Article  Google Scholar 

  2. Madaki, A. G.; Roslan, R.; Rusiman, M. S.; Raju, C. S. K.: Analytical and numerical solutions of squeezing unsteady Cu and TiO2-nanofluid flow in the presence of thermal radiation and heat generation/absorption,” Alexandria Eng. J. (2017)

  3. Muhammad, N.; Nadeem, S.; Mustafa, T.: Squeezed flow of a nanofluid with cattaneo-christov heat and mass fluxes. Results Phys. 7, 862–869 (2017)

    Article  Google Scholar 

  4. Kandasamy, R.; Mohammad, R.; Zailani, N.A.B.M.; Jaafar, N.F.B.: Nanoparticle shapes on squeezed MHD nanofluid flow over a porous sensor surface. J. Mol. Liq. 233, 156–165 (2017)

    Article  Google Scholar 

  5. Choi, S.U.S.; Eastman, J.A.: Enhancing Thermal Conductivity of Fluids with Nanoparticles. Argonne National Lab, IL (United States) (1995)

    Google Scholar 

  6. Sheikholeslami, M.; Shehzad, S.A.; Abbasi, F.M.; Li, Z.: Nanofluid flow and forced convection heat transfer due to lorentz forces in a porous lid driven cubic enclosure with hot obstacle. Comput. Methods Appl. Mech. Eng. 338, 491–505 (2018)

    Article  MathSciNet  Google Scholar 

  7. Sui, D.; Langåker, V.H.; Yu, Z.: Investigation of thermophysical properties of nanofluids for application in geothermal energy. Energy Procedia 105, 5055–5060 (2017)

    Article  Google Scholar 

  8. Mehmood, R.; Nadeem, S.; Saleem, S.; Akbar, N.S.: Flow and heat transfer analysis of jeffery nano fluid impinging obliquely over a stretched plate. J. Taiwan Inst. Chem. Eng. 74, 49–58 (2017)

    Article  Google Scholar 

  9. Saleem, S.; Abd El-Aziz, M.: Entropy generation and convective heat transfer of radiated non-newtonian power-law fluid past an exponentially moving surface under slip effects. Eur. Phys. J. Plus 134(4), 184 (2019)

    Article  Google Scholar 

  10. Sheikholeslami, M.; Rokni, H.B.: Influence of EFD viscosity on nanofluid forced convection in a cavity with sinusoidal wall. J. Mol. Liq. 232, 390–395 (2017)

    Article  Google Scholar 

  11. Selvam, C.; Raja, R.S.; Lal, D.M.; Harish, S.: Overall heat transfer coefficient improvement of an automobile radiator with Graphene based suspensions. Int. J. Heat Mass Transf. 115, 580–588 (2017)

    Article  Google Scholar 

  12. Chamkha, A.J.; Molana, M.; Rahnama, A.; Ghadami, F.: On the nanofluids applications in microchannels: a comprehensive review. Powder Technol. 332, 287–322 (2018)

    Article  Google Scholar 

  13. Ghalambaz, M.; Behseresht, A.; Behseresht, J.; Chamkha, A.: Effects of nanoparticles diameter and concentration on natural convection of the Al2O3—water nanofluids considering variable thermal conductivity around a vertical cone in porous media. Adv. Powder Technol. 26(1), 224–235 (2015)

    Article  Google Scholar 

  14. Parvin, S.; Chamkha, A.J.: An analysis on free convection flow, heat transfer and entropy generation in an odd-shaped cavity filled with nanofluid. Int. Commun. Heat Mass Transf. 54, 8–17 (2014)

    Article  Google Scholar 

  15. Umavathi, J.C.; Chamkha, A.J.; Mateen, A.; Al-Mudhaf, A.: Unsteady two-fluid flow and heat transfer in a horizontal channel. Heat Mass Transf. 42(2), 81 (2005)

    Article  Google Scholar 

  16. Chamkha, A.J.: On laminar hydromagnetic mixed convection flow in a vertical channel with symmetric and asymmetric wall heating conditions. Int. J. Heat Mass Transf. 45(12), 2509–2525 (2002)

    Article  Google Scholar 

  17. Ghalambaz, M.; Chamkha, A.J.; Wen, D.: Natural convective flow and heat transfer of nano-encapsulated phase change materials (NEPCMs) in a Cavity. Int. J. Heat Mass Transf. 138, 738–749 (2019)

    Article  Google Scholar 

  18. Ijaz, S.; Nadeem, S.: Examination of nanoparticles as a drug carrier on blood flow through catheterized composite stenosed artery with permeable walls. Comput. Methods Program. Biomed. 133, 83–94 (2016)

    Article  Google Scholar 

  19. Bahiraei, M.; Mazaheri, N.: Application of a novel hybrid nanofluid containing graphene-platinum nanoparticles in a chaotic twisted geometry for utilization in miniature devices: thermal and energy efficiency considerations. Int. J. Mech. Sci. 138, 337–349 (2018)

    Article  Google Scholar 

  20. Kumar, R.; Sood, S.; Shehzad, S.A.; Sheikholeslami, M.: Radiative heat transfer study for flow of non-newtonian nanofluid past a riga plate with variable thickness. J. Mol. Liq. 248, 143–152 (2017)

    Article  Google Scholar 

  21. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56 (1991)

    Article  Google Scholar 

  22. Fan, L.-W.; Li, J.-Q.; Wu, Y.-Z.; Zhang, L.; Yu, Z.-T.: Pool boiling heat transfer during quenching in carbon nanotube (CNT)-based aqueous nanofluids: effects of length and diameter of the CNTs. Appl. Therm. Eng. 122, 555–565 (2017)

    Article  Google Scholar 

  23. Shahzadi, I.; Nadeem, S.; Rabiei, F.: Simultaneous effects of single wall carbon nanotube and effective variable viscosity for peristaltic flow through annulus having permeable walls. Results Phys. 7, 667–676 (2017)

    Article  Google Scholar 

  24. Hussain, S.T.; Khan, Z.H.; Nadeem, S.: Water driven flow of carbon nanotubes in a rotating channel. J. Mol. Liq. 214, 136–144 (2016)

    Article  Google Scholar 

  25. Turkyilmazoglu, M.: Single phase nanofluids in fluid mechanics and their hydrodynamic linear stability analysis. Comput. Methods Program. Biomed. 187, 105171 (2020)

    Article  Google Scholar 

  26. Turkyilmazoglu, M.: Magnetic field and slip effects on the flow and heat transfer of stagnation point jeffrey fluid over deformable surfaces. Zeitschrift für Naturforsch. A 71(6), 549–556 (2016)

    Article  Google Scholar 

  27. Ahmad, R.; Mustafa, M.; Turkyilmazoglu, M.: Buoyancy effects on nanofluid flow past a convectively heated vertical riga-plate: a numerical study. Int. J. Heat Mass Transf. 111, 827–835 (2017)

    Article  Google Scholar 

  28. Turkyilmazoglu, M.: Fully developed slip flow in a concentric annuli via single and dual phase nanofluids models. Comput. Methods Program. Biomed. 179, 104997 (2019)

    Article  Google Scholar 

  29. Ahmed, Z.; Nadeem, S.; Saleem, S.; Ellahi, R.: Numerical study of unsteady flow and heat transfer CNT-based MHD nanofluid with variable viscosity over a permeable shrinking surface. Int. J. Numer, Methods Heat Fluid Flow (2019)

    Book  Google Scholar 

  30. Rana, S.; Nawaz, M.; Saleem, S.; Alharbi, S.O.: Numerical study on enhancement of heat transfer in hybrid nano-micropolar fluid. Phys. Scr. 95(4), 45201 (2020)

    Article  Google Scholar 

  31. Sheikholeslami, M.; Ghasemi, A.; Li, Z.; Shafee, A.; Saleem, S.: Influence of CuO nanoparticles on heat transfer behavior of PCM in solidification process considering radiative source term. Int. J. Heat Mass Transf. 126, 1252–1264 (2018)

    Article  Google Scholar 

  32. Murshed, S.M.S.; Estellé, P.: A state of the art review on viscosity of nanofluids. Renew. Sustain. Energy Rev. 76, 1134–1152 (2017)

    Article  Google Scholar 

  33. Babu, M.J.; Sandeep, N.; Ali, M.E.; Nuhait, A.O.: Magnetohydrodynamic dissipative flow across the slendering stretching sheet with temperature dependent variable viscosity. Results Phys. 7, 1801–1807 (2017)

    Article  Google Scholar 

  34. Xun, S.; Zhao, J.; Zheng, L.; Zhang, X.: Bioconvection in rotating system immersed in nanofluid with temperature dependent viscosity and thermal conductivity. Int. J. Heat Mass Transf. 111, 1001–1006 (2017)

    Article  Google Scholar 

  35. Akbar, N.S.; Khan, Z.H.: Variable fluid properties analysis with water based CNT nanofluid over a sensor sheet: numerical solution. J. Mol. Liq. 232, 471–477 (2017)

    Article  Google Scholar 

  36. Sobamowo, M.G.; Akinshilo, A.T.: Analysis of flow, heat transfer and entropy generation in a pipe conveying fourth grade fluid with temperature dependent viscosities and internal heat generation. J. Mol. Liq. 241, 188–198 (2017)

    Article  Google Scholar 

  37. Wang, C.Y.: The squeezing of a fluid between two plates. J. Appl. Mech. 43(4), 579–583 (1976)

    Article  Google Scholar 

  38. Xue, Q.Z.: Model for the effective thermal conductivity of carbon nanotube composites. Nanotechnology 17(6), 1655 (2006)

    Article  Google Scholar 

  39. Nadeem, S.; Ahmed, Z.; Saleem, S.: The effect of variable viscosities on micropolar flow of two nanofluids. Zeitschrift fur Naturforsch. Sect. A J. Phys. Sci. 71(12) (2016)

  40. Kandasamy, R.; Muhammad, R.: Thermal radiation energy on squeezed MHD flow of Cu, Al2O3 and CNTs-nanofluid over a sensor surface. Alexandria Eng. J. 55(3), 2405–2421 (2016)

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to express their gratitude to King Khalid University, Abha 61413, Saudi Arabia, for providing administrative and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Saleem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, Z., Saleem, S., Nadeem, S. et al. Squeezing Flow of Carbon Nanotubes-Based Nanofluid in Channel Considering Temperature-Dependent Viscosity: A Numerical Approach. Arab J Sci Eng 46, 2047–2053 (2021). https://doi.org/10.1007/s13369-020-04981-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04981-x

Keywords

Navigation