Skip to main content
Log in

Mechanically Detected Terahertz Electron Spin Resonance

  • Review
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

In this review, mechanically detected electron spin resonance (MDESR) in the terahertz (THz) region is described to demonstrate its usability as a novel methodology for obtaining microscopic insights into local electronic structures. Using micromechanical devices, the sensitivity to a small-volume sample is greatly enhanced even for a cavityless setup. Moreover, there are plenty of options in the setup of MDESR, including detection modes, mechanical devices, and detection techniques. ESR spectroscopy of single-crystalline, powder, and frozen solution samples in the THz region are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

(Reprinted with permission from [16]. Copyright 2018 Elsevier)

Fig. 4
Fig. 5
Fig. 6

(Reprinted with permission from [32]. Copyright 2015 AIP Publishing)

Fig. 7

(Reprinted with permission from [33]. Copyright 2013 Elsevier)

Fig. 8

(Reprinted with permission from [38]. Copyright 2018 AIP Publishing)

Fig. 9

(Reprinted with permission from [4]. Copyright 2018 AIP Publishing)

Fig. 10

(Reprinted with permission from [4]. Copyright 2018 AIP Publishing)

Fig. 11

(Reprinted with permission from [4]. Copyright 2018 AIP Publishing)

Fig. 12

(Reprinted with permission from [4]. Copyright 2018 AIP Publishing)

Fig. 13

(Reprinted with permission from [48]. Copyright 2018 AIP Publishing)

Fig. 14

(Reprinted with permission from [48]. Copyright 2018 AIP Publishing)

Similar content being viewed by others

References

  1. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford, 1970)

    Google Scholar 

  2. M. Motokawa, H. Ohta, N. Makita, Int. J. Infrared Millim. Waves 12, 149 (1991)

    ADS  Google Scholar 

  3. S. Kimura, H. Ohta, M. Motokawa, S. Mitsudo, W.-J. Jang, M. Hasegawa, H. Takei, Int. J. Infrared Millim. Waves 17, 833 (1996)

    ADS  Google Scholar 

  4. H. Takahashi, T. Okamoto, K. Ishimura, S. Hara, E. Ohmichi, H. Ohta, Rev. Sci. Instrum. 89, 083905 (2018)

    ADS  Google Scholar 

  5. J. Madou, Fundamentals of Microfabrication and Nanotechnology (CRC Press, Boca Raton, 2011)

    Google Scholar 

  6. B. Ilic, H.G. Craighead, J. Appl. Phys. 95, 3694 (2004)

    ADS  Google Scholar 

  7. N.E. Jenkins, L.P. DeFlores, J. Allen, T.N. Ng, S.R. Garner, S. Kuehn, J.M. Dawlaty, A. Marohn, J. Vac. Sci. Technol. B 22, 909 (2004)

    Google Scholar 

  8. T. Sasaki, A.G. Lebed, T. Fukase, N. Toyota, Phys. Rev. B 54, 12969 (1996)

    ADS  Google Scholar 

  9. D. Rugar, C.S. Yannoni, J.A. Sidles, Nature 360, 563 (1992)

    ADS  Google Scholar 

  10. M. Poggio, C.L. Degen, Nanotechnology 21, 342001 (2010)

    Google Scholar 

  11. S. Kuehn, S.A. Hickman, J.A. Marohn, J. Chem. Phys. 128, 052208 (2008)

    ADS  Google Scholar 

  12. See http://www.nanosensors.com/ for product information

  13. See https://www.hitachi-hightech.com/global/ for product information. Note that PRC-400 is now obsolete

  14. T.D. Stowe, K. Yasumura, T.W. Kenny, D. Botkin, K. Wago, D. Rugar, Appl. Phys. Lett. 71, 288 (1997)

    ADS  Google Scholar 

  15. S.A. Hickman, E.W. Moore, S. Lee, J.G. Longenecker, S.J. Wright, L.E. Harrell, J.A. Marohn, ACS Nano 4, 7141 (2010)

    Google Scholar 

  16. E. Ohmichi, T. Miki, H. Horie, T. Okamoto, H. Takahashi, Y. Higashi, S. Itoh, H. Ohta, J. Magn. Reson. 287, 41 (2018)

    ADS  Google Scholar 

  17. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014)

    ADS  Google Scholar 

  18. I. Favero, F. Marquardt, New J. Phys. 16, 085006 (2014)

    ADS  Google Scholar 

  19. M. Metcalfe, Appl. Phys. Rev. 1, 031105 (2014)

    ADS  Google Scholar 

  20. G. Yoshikawa, T. Akiyama, S. Gautsch, P. Vettiger, H. Rohrer, Nano Lett. 11, 1044 (2011)

    ADS  Google Scholar 

  21. See http://www.ntt-at.co.jp/for information about the SiN\(_x\) membrane chip

  22. H. Takahashi, K. Ando, Y. Shirakawabe, Ultramicroscopy 91, 63 (2002)

    Google Scholar 

  23. Y. Kanda, Sens. Actuator A Phys. 28, 83 (1991)

    Google Scholar 

  24. D.T. Smith, J.R. Pratt, L.P. Howard, Rev. Sci. Instrum. 80, 035105 (2009)

    ADS  Google Scholar 

  25. H. Takahashi, T. Okamoto, E. Ohmichi, H. Ohta, Appl. Phys. Exp. 9, 126701 (2016)

    ADS  Google Scholar 

  26. E. Ohmichi, T. Osada, Rev. Sci. Instrum. 73, 3022 (2002)

    ADS  Google Scholar 

  27. E. Ohmichi, N. Mizuno, M. Kimata, H. Ohta, T. Osada, Rev. Sci. Instrum. 80, 013904 (2009)

    ADS  Google Scholar 

  28. W. Hofmann, Z. Krystallogr. 78, 279 (1931)

    Google Scholar 

  29. T.N. Margulis, D.H. Templeton, Z. Krystallogr. 117, 344 (1962)

    Google Scholar 

  30. A. Abragam, M.H. Pryce, Proc. R. Soc. Lond. A 206, 173 (1951)

    ADS  Google Scholar 

  31. E. Ohmichi, N. Mizuno, M. Kimata, H. Ohta, Rev. Sci. Instrum. 79, 103903 (2008)

    ADS  Google Scholar 

  32. H. Takahashi, E. Ohmichi, H. Ohta, Appl. Phys. Lett. 107, 182405 (2015)

    ADS  Google Scholar 

  33. E. Ohmichi, S. Hirano, H. Ohta, J. Magn. Reson. 227, 9 (2013)

    ADS  Google Scholar 

  34. E. Ohmichi, Y. Tokuda, R. Tabuse, D. Tsubokura, T. Okamoto, H. Ohta, Rev. Sci. Instrum. 87, 073904 (2016)

    ADS  Google Scholar 

  35. M. Blankenhorn, E. Heintze, M. Slota, J. van Slageren, B.A. Moores, C.L. Degen, L. Bogani, M. Dressel, Rev. Sci. Instrum. 88, 094707 (2017)

    ADS  Google Scholar 

  36. N. Scozzaro, W. Ruchotzke, A. Belding, J. Cardellino, E.C. Blomberg, B.A. McCullian, V.P. Bhallamudi, D.V. Pelekhov, P.C. Hammel, J. Magn. Reson. 271, 15 (2016)

    ADS  Google Scholar 

  37. H. Takahashi, K. Ishimura, T. Okamoto, E. Ohmichi, H. Ohta, J. Phys. Soc. Jpn. 86, 063002 (2017)

    ADS  Google Scholar 

  38. H. Takahashi, K. Ishimura, T. Okamoto, E. Ohmichi, H. Ohta, Rev. Sci. Instrum. 89, 036108 (2018)

    ADS  Google Scholar 

  39. S. Hara, H. Sato, T. Watanabe, Y. Narumi, T. Sakurai, H. Ohta (unpublished)

  40. H. Takahashi, D. Hachiya, E. Ohmichi, H. Ohta (unpublished)

  41. S. Stoll, A. Schweiger, J. Magn. Reson. 178, 42 (2006)

    ADS  Google Scholar 

  42. T. Okamoto, E. Ohmichi, S. Okubo, H. Ohta, J. Phys. Soc. Jpn. 87, 013702 (2018)

    ADS  Google Scholar 

  43. G. Hanson, L. Berliner (eds.), High Resolution EPR, Applications to Metalloenzymes and Metals in Medicine (Springer, Berlin, 2009)

    Google Scholar 

  44. K. Möbius, A. Savitsky, High-Field EPR Spectroscopy on Proteins and Their Model Systems: Characterization of Transient Paramagnetic States (Royal Society of Chemistry, Cambridge, 2009)

    Google Scholar 

  45. D.E. Koenig, Acta Cryst. 18, 663 (1965)

    Google Scholar 

  46. J. Nehrkorn, J. Telser, K. Holldack, S. Stoll, A. Schnegg, J. Phys. Chem. B 119, 13816 (2015)

    Google Scholar 

  47. K. Möbius, A. Savitsky, A. Schnegg, M. Plato, M. Fuchs, Phys. Chem. Chem. Phys. 7, 19 (2005)

    Google Scholar 

  48. T. Okamoto, H. Takahashi, E. Ohmichi, H. Ishikawa, Y. Mizutani, H. Ohta, Appl. Phys. Lett. 113, 223702 (2018)

    Google Scholar 

  49. R.E. Dickerson, The Proteins (Academic Press, New York, 1964)

    Google Scholar 

  50. Y. Miyajima, H. Yashiro, T. Kashiwagi, M. Hagiwara, H. Hori, J. Phys. Soc. Jpn. 73, 280 (2004)

    ADS  Google Scholar 

  51. M. Kondoh, M. Mizuno, Y. Mizutani, J. Phys. Chem. Lett. 7, 1950 (2016)

    Google Scholar 

  52. T. Yonetani, H. Schleyer, J. Biol. Chem. 242, 3926 (1967)

    Google Scholar 

  53. J. Ernst, J. Subramanian, J.-H. Fuhrhop, Z. Naturforsch. A 32, 1129 (1977)

    ADS  Google Scholar 

  54. H. Takahashi, D. Hachiya, E. Ohmichi, H. Ohta, Y. Ishikawa, S. Mitsudo (unpublished)

Download references

Acknowledgements

The authors acknowledge the collaborations with H. Ishikawa and Y. Mizutani for myoglobin preparation, with Y. Higashi, and S. Itoh for secondary ion mass spectroscopy analysis, with S. Hara for supplying single crystals of quantum magnets, with T. Yonetani, H. Hori, and M. Horitani for fruitful discussions, and with M. Kimata, N. Mizuno, S. Hirano, R. Tabuse, D. Tsubokura, Y. Tokuda, T. Miki, H. Horie, and K. Ishimura for helping technical developments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Ohmichi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohmichi, E., Okamoto, T., Takahashi, H. et al. Mechanically Detected Terahertz Electron Spin Resonance. Appl Magn Reson 52, 283–304 (2021). https://doi.org/10.1007/s00723-020-01279-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01279-x

Navigation