Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access October 17, 2020

Seeding the Solar System with Life: Mars, Venus, Earth, Moon, Protoplanets

  • Rhawn G. Joseph EMAIL logo , Olivier Planchon , Carl H. Gibson and Rudolph Schild
From the journal Open Astronomy

Abstract

In the space of the entire universe, the only conclusive evidence of life, is found on Earth. Although the ultimate source of all life is unknown, many investigators believe Earth, Mars, and Venus may have been seeded with life when these planets, and the sun, were forming in a galactic cluster of thousands of stars and protoplanets. Yet others hypothesize that while and after becoming established members of this solar system, these worlds became contaminated with life during the heavy bombardment phase when struck by millions of life-bearing meteors, asteroids, comets and oceans of ice. Because bolide impacts may eject tons of life-bearing debris into space, and as powerful solar winds may blow upper atmospheric organisms into space, these three planets may have repeatedly exchanged living organisms for billions of years. In support of these hypotheses is evidence suggestive of stromatolites, algae, and lichens on Mars, fungi on Mars and Venus, and formations resembling fossilized acritarchs and metazoans on Mars, and fossilized impressions resembling microbial organisms on the lunar surface, and dormant microbes recovered from the interior of a lunar camera. The evidence reviewed in this report supports the interplanetary transfer hypothesis and that Earth may be seeding this solar system with life.

References

Abe Y, Abe-Ouchi A, Sleep N, Zahnle K. 2011. Habitable Zone Limits for Dry Planets. Astrobiology. 11(5):443–460.10.1089/ast.2010.0545Search in Google Scholar

Acuña MH, Connerney JEP, Ness NF, Lin RP, Mitchell D, Carlson CW, et al. 1999. Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER Experiment. Science. 284:790–793.10.1126/science.284.5415.790Search in Google Scholar

Adams FC. 2010. The birth environment of the Solar System. Annu Rev Astron Astrophys. 48:47–85.10.1146/annurev-astro-081309-130830Search in Google Scholar

Adams FC, Myers PC. 2001. Modes of Multiple Star Formation. Astrophys J. 553(2):744.Search in Google Scholar

Adams FC, Spergel DN. 2005. Lithopanspermia in star forming clusters. Astrobiology. 5:497–514.10.1089/ast.2005.5.497Search in Google Scholar

Adcock CT, Hausrath EM. 2015. Weathering Profiles in Phosphorus-Rich Rocks at Gusev Crater, Mars, Suggest Dissolution of Phosphate Minerals into Potentially Habitable Near-Neutral Waters. Astrobiology. 15(12):1060–1075.10.1089/ast.2015.1291Search in Google Scholar

Ader M, Sansjofre P, Halverson GP, Busigny V, Trindade RIF, Kunzmann M, et al. 2014. Ocean redox structure across the late Neoproterozoic oxygenation event: a nitrogen isotope perspective. Earth Planet Sci Lett. 396: 1–13.10.1016/j.epsl.2014.03.042Search in Google Scholar

Adeli S, Hauber E, Klein-Hans M, Le Deit L, Platz T, Fawdon P, et al. 2017. Amazonian-aged fluvial system in the southern mid-latitude regions, Mars. Lunar Planet Sci. XLVIII:2 p.Search in Google Scholar

Adhikari A, Reponen T, Grinshpun SA, Martuzevicius D, LeMasters G. 2006. Correlation of ambient inhalable bioaerosols with particulate matter and ozone: A two-year study. Environ Pollut. 140:16–28.10.1016/j.envpol.2005.07.004Search in Google Scholar

Agee CB., Wilson NV, McCubbin FM, Ziegler K, Polyak VJ, Sharp ZD, et al. 2013. Unique Meteorite from Early Amazonian Mars: Water-Rich Basaltic Breccia Northwest Africa 7034. Science. 339:780–785.10.1126/science.1228858Search in Google Scholar

Aharon P. 2005. Redox stratification and anoxia of the early Precambrian oceans: Implications for carbon isotope excursions and oxidation events. Precambrian Res. 137(3–4):207–222.10.1016/j.precamres.2005.03.008Search in Google Scholar

Alexander M. 1991. Introduction to Soil Microbiology, 2nd Edition. Malabar, FL: Krieger Publishing Company.Search in Google Scholar

Al-Sanad H, Ismael NF. 1992. Thermal properties of desert sands in Kuwait. J University of Kuwait. 19:207–215.Search in Google Scholar

Al-Temeemi AA, Harris DJ. 2001. The generation of subsurface temperature profiles for Kuwait. Energy Build. 33:837–841.10.1016/S0378-7788(01)00069-XSearch in Google Scholar

Alvarez LW, Alvarez W, Asaro F, Michel HV. 1980. Extraterritorial cause for the Cretaceous-Tertiary extinction. Science. 208:1095–1108.10.1126/science.208.4448.1095Search in Google Scholar

Andrews-Hanna J, Phillips R, Zuber M. 2007. Meridiani Planum and the global hydrology of Mars. Nature. 446:163–166.10.1038/nature05594Search in Google Scholar

Angel R, Matthies D, Conrad R. 2011. Activation of Methanogenesis in Arid Biological Soil Crusts Despite the Presence of Oxygen. PLoS ONE. 6:e20453.10.1371/journal.pone.0020453Search in Google Scholar

Anisimov V. 2010. Principles of Genetic Evolution and the ExtraTerrestrial Origins of life. J Cosmol. 5:843–850.Search in Google Scholar

Arbab AI. 2009. The length of the day: A cosmological perspective. Prog Phys. 1: 8–11.Search in Google Scholar

Arkani-Hamed J, Boutin D. 2004. Paleomagnetic poles of Mars: Revisited. J Geophys Res. 109:E03011.10.1029/2003JE002229Search in Google Scholar

Armstrong RA. 1976. The influence of the frequency of wetting and drying on the radial growth of three saxicolous lichens in the field. New Phytol. 77:719–724.10.1111/j.1469-8137.1976.tb04666.xSearch in Google Scholar

Armstrong RA 1981. Field experiments on the dispersal, establishment and colonization of lichens on a slate rock surface. Environ Exp Bot. 21:116–120.10.1016/0098-8472(81)90016-2Search in Google Scholar

Armstrong RA. 2017. Adaptation of Lichens to Extreme Conditions. In: Shukla V, Kumar S, Kumar N. Editors. Plant Adaptation Strategies in Changing Environment. Springer, Singapore.10.1007/978-981-10-6744-0_1Search in Google Scholar

Armstrong RA. 2019. The Lichen Symbiosis: Lichen “Extremophiles” and Survival on Mars. J Astrobiol Space Sci Rev. 1:378–397.Search in Google Scholar

Arnold J, et al. 1995. Harold Clayton Urey, 1893-1981. A Biographical Memoir by National Academy of Science Press.Search in Google Scholar

Arouri KR, Greenwood PF, Walter M. 2000. Biological affinities of Neoproterozoic acritarchs from Australia: microscopic and chemical characterisation. Org Geochem. 31:75–89.10.1016/S0146-6380(99)00145-XSearch in Google Scholar

Arrhenius S. 1908. Worlds in the Making. Harper & Brothers, New York.Search in Google Scholar

Arvidson RE, Squyres SW, Anderson RC, Bell III JF, Blaney D, Brückner J, et al. 2006. Overview of the Spirit Mars Exploration Rover mission to Gusev Crater: Landing site to Backstay Rock in the Columbia Hills. J Geophys Res. 111:E02S01.Search in Google Scholar

Artemieva N, Ivanov B. 2004. Launch of Martian Meteorites in Oblique Impacts. Icarus. 171:84–101.10.1016/j.icarus.2004.05.003Search in Google Scholar

Ash RD, Knott SF, Turner G. 1996. A 4-Gyr shock age for a martian meteorite and implications for the cratering history of Mars. Nature. 380:57–59.10.1038/380057a0Search in Google Scholar

Avduevsky VS, Marov MY, Rozhdestvensky MK, Borodin NF, Kerzhanovich VV. 1971. Soft landing of Venera 7 on the Venus surface and preliminary results of investigations of the Venus atmosphere. J Atmos Sci. 28:263–269.10.1175/1520-0469(1971)028<0263:SLOVOT>2.0.CO;2Search in Google Scholar

Bange HW, Uher G. 2005. Photochemical production of methane in natural waters: implications for its present and past oceanic source. Chemosphere. 58:177–183.10.1016/j.chemosphere.2004.06.022Search in Google Scholar

Bange HW, Bartell U, Rapsomanikis S, Andreae MO. 1994. Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane. Global Biogeochem Cy. 8:465–480.10.1029/94GB02181Search in Google Scholar

Barnhart CJ, Howard AD, Moore JM. 2009. Long-term precipitation and late-stage valley network formation: landform simulations of parana basin, Mars. J Geophys Res: Planets. 114:E01003.10.1029/2008JE003122Search in Google Scholar

Baross JA, Deming JW. 1983. Growth of black smoke bacteria at temperature at least 250 Celsius. Nature. 303:423–426.10.1038/303423a0Search in Google Scholar

Barstow JK, Tsang CCC, Wilson CF, Irwin PGJ, Taylor FW, McGouldrick K, et al. 2012. Models of the global cloud structure on Venus derived from Venus Express observations. Icarus. 217:542–560.10.1016/j.icarus.2011.05.018Search in Google Scholar

Bastviken D, Cole J, Pace ML, Tranvik L. 2004. Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochem Cy. 18:GB4009.Search in Google Scholar

Bastviken D, Tranvik LJ, Downing JA, Crill PM, EnrichPrast A. 2011. Freshwater methane emissions offset the continental carbon sink. Science. 331(6013):50.Search in Google Scholar

Beech M, Comte M, Coulson I. 2018. Lithopanspermia – The Terrestrial Input During the Past 550 Million Years. Am J Astron Astrophys. 7(1):81–90.10.11648/j.ajaa.20180603.14Search in Google Scholar

Belbruno E, Gott III JR. 2005. Where Did the Moon Come From? Astron J. 129:1724–1745.Search in Google Scholar

Belbruno E, Moro-Martín A, Malhotra R, Savransky D. 2012. Chaotic Exchange of Solid Material Between Planetary Systems: Implications for Lithopanspermia. Astrobiol. 12(8):754–774.10.1089/ast.2012.0825Search in Google Scholar

Bengtson S, Belivanova V, Rasmussen B, Whitehouse M. 2009. The controversial “Cambrian” fossils of the Vindhyan are real but more than a billion years older. PNAS. 106(19):7729–7734.Search in Google Scholar

Bianciardi G, Rizzo V, Cantasano N. 2014. Opportunity Rover’s image analysis: Microbialites on Mars? Int J Aeronaut Space Sci. 15(4):419–433.10.5139/IJASS.2014.15.4.419Search in Google Scholar

Bianciardi G, Rizzo V, Farias ME, Cantasano N. 2015. Microbialites at Gusev Craters, Mars. Astrobiol Outreach. 3(5): 1000143.10.4172/2332-2519.1000143Search in Google Scholar

Bibring J-P, Langevin Y, Mustard JF, Poulet F, Arvidson R, Gendrin A, et al. 2006. Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data. Science. 312:400–404.10.1126/science.1122659Search in Google Scholar PubMed

Biemann K, Oro J, Toulmin III P, Orgel LE, Nier AO, Anderson DM, et al. 1977. The search for organic substances and inorganic volatile compounds in the surface of Mars. J Geophys Res. 82:4641–4658.10.1029/JS082i028p04641Search in Google Scholar

Bogard MJ, del Giorgio PA, Boutet L, Chaves MCG, Prairie YT, Mer-ante A, et al. 2014. Oxic water column methanogenesis as a major component of aquatic CH4 fluxes. Nat Commun. 5:5350.10.1038/ncomms6350Search in Google Scholar PubMed

Borel E. 1962. Probability and Life, Dover.Search in Google Scholar

Boyle LA, Redman MP. 2016. Planet Destruction and the Shaping of Planetary Nebulae. Proceedings of the International Astronomical Union Symposium 323, Planetary Nebulae: Multi-Wavelength Probes of Stellar and Galactic Evolution.10.1017/S1743921317000539Search in Google Scholar

Bridges N, Núñez JI, Seelos FP, IV, Hook SJ, Baldridge AM, Thomson BJ. 2015. Mineralogy of evaporite deposits on Mars: Constraints from laboratory, field, and remote measurements of analog terrestrial acid saline lakes. American Geophysical Union, Fall Meeting 2015, abstract id. P31A-2022Search in Google Scholar

Bruhn D, Mikkelsen TN, Øbro J, Willats WGT, Ambus P. 2009. Effects of temperature, ultraviolet radiation and pectin methyl esterase on aerobic methane release from plant material. Plant Biol. 11:43–48.10.1111/j.1438-8677.2009.00202.xSearch in Google Scholar PubMed

Borg L, Drake MJ. 2005. J Geophys Res Planets. 110:E12S03.10.1029/2005JE002402Search in Google Scholar

Borg LE, Draper DS. 2003. A petrogenetic model for the origin and compositional variation of the Martian basaltic meteorites. Meteoritics & Planetary Science. 38:1713–1732.10.1111/j.1945-5100.2003.tb00011.xSearch in Google Scholar

Boynton WV, Taylor GJ, Evans LG, Reedy RC, Starr R, Janes DM, et al. 2007. Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latituderegions of Mars. J Geophys Res Planets. 112:E12S99.Search in Google Scholar

Brocks JJ, Jarrett AJM, Sirantoine E, Hallmann C, Hoshino Y, Liyanage T. 2017. The rise of algae in Cryogenian oceans and the emergence of animals. Nature. 548:578–581.10.1038/nature23457Search in Google Scholar PubMed

Brodie EL, DeSantis TZ, Parker JPM, Zubietta IX, Piceno YM, Andersen GL. 2007. Urban aerosols harbor diverse and dynamic bacterial populations. PNAS. 104:299–304.10.1073/pnas.0608255104Search in Google Scholar PubMed PubMed Central

Brodo IM, et al. 2001. Lichens of North America. Yale University Press. pp. 50, 55, 173-4.Search in Google Scholar

Bruhn D, Møller IM, Mikkelsen TN. Ambus P. 2012. Terrestrial plant methane production and emission. Physiol Plant. 144:201–209.10.1111/j.1399-3054.2011.01551.xSearch in Google Scholar PubMed

Burchell JR, Mann J, Bunch AW. 2004. Survival of bacteria and spores under extreme shock pressures. Mon Not R Astron Soc. 352:1273–1278.10.1111/j.1365-2966.2004.08015.xSearch in Google Scholar

Burchell MJ, Mann J, Bunch AW, Brandão PFB. 2001. Survivability of bacteria in hypervelocity impact. Icarus. 154:545–547.10.1006/icar.2001.6738Search in Google Scholar

Buz J, Ehlmann BL, Pan L, Grotzinger JP. 2017. Mineralogy and stratigraphy of the Gale crater rim, wall, and floor units. J Geophys Res Planets. 122:1090–1118.10.1002/2016JE005163Search in Google Scholar

Cabrol NA, Grin EA. 1999. Distribution, classification, and ages of Martian impact crater lakes. Icarus. 142(1):160–172.Search in Google Scholar

Cabrol NA, Herkenhoff K, Knoll AH, Farmer J, Arvidson R, Grin E, et al. 2014. Sands at Gusev Crater, Mars. J Geophys Res: Planets. 119:941–967.10.1002/2013JE004535Search in Google Scholar

Cai Y, Zheng Y, Bodelier P, Conrad R, Jia Z. 2016. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nat Commun. 7:11728.10.1038/ncomms11728Search in Google Scholar PubMed PubMed Central

Canfield DE, Poulton SW. 2011. Ferruginous Conditions: A Dominant Feature of the Ocean through Earth’s History. Elements. 7(2):107–112.10.2113/gselements.7.2.107Search in Google Scholar

Cano RJ, Borucki MK. 1995. Revival and identification of bacterial spores in 25– to 40-million-year-old Dominican amber. Science. 268:1060–1064.10.1126/science.7538699Search in Google Scholar PubMed

Cardona T, Sanchez-Baracaldo P, Rutherford AW, Larkum AWD. 2019. Early Archean origin of Photosystem II. Geobiology. 17:127–150.10.1111/gbi.12322Search in Google Scholar PubMed PubMed Central

Carr MH. 1987. Water on Mars. Nature. 326:30–35.10.1038/326030a0Search in Google Scholar

Catling DC., Zahnle KJ. 2020. The Archean atmosphere. Sci Adv. 6(1042):eaax1420.10.1126/sciadv.aax1420Search in Google Scholar PubMed PubMed Central

Catling DC, Claire MW. 2005. How Earth’s atmosphere evolved to an oxic state: A status report. Earth and Planetary Sci Lett. 237(1–2):1–20.10.1016/j.epsl.2005.06.013Search in Google Scholar

Catling DC, Kasting JF. 2017. Atmospheric Evolution on Inhabited and Lifeless Worlds. Cambridge: Cambridge University Press.10.1017/9781139020558Search in Google Scholar

Catling DC. 2001. Biogenic Methane, Hydrogen Escape, and the Irreversible Oxidation of Early Earth. Science. 293(5531):839–843.Search in Google Scholar

Chambers JE, Lissauer JJ. 2002. A new dynamical model for the lunar Late Heavy Bombardment. Lunar Planet Sci. Conf. XXXIII, abstr. 1093, 2 p.Search in Google Scholar

Chen H, Wu Y, Yuan X, Gao Y, Wu N, Zhu D. 2009. Methane emissions from newly created marshes in the drawdown area of the Three Gorges Reservoir. J Geophys Res. 114:D18301.10.1029/2009JD012410Search in Google Scholar

Clarke A, Morris GJ, Fonseca F, Murray BJ, Acton E, Price HC. 2013. A low temperature limit for life on Earth. PLoS One. 8:e66207.v.10.1371/journal.pone.0066207Search in Google Scholar

Clayton RN. 1993. Oxygen isotopes in meteorites. Annu Rev Earth Planet Sci. 21:115–149.10.1146/annurev.ea.21.050193.000555Search in Google Scholar

Clayton RN, Mayeda T. 1983. Oxygen isotopes in Eucrites, Shergottites, Nakhlites, Chassignites. Earth Planet Sci Lett. 62:115–149.Search in Google Scholar

Clayton RN, Mayeda T. 1996. Oxygen isotopes studies on achondrites. Geochim Cosmochim Acta. 60:19992017.10.1016/0016-7037(96)00074-9Search in Google Scholar

Clement SJ, Dulay MT, Gillette JS, Chillier XD, Mahajan TB, Zare RN. 1998. Evidence for the extraterrestrial origin of polycyclic aromatic hydrocarbons in the Martian meteorite ALH84001. Faraday Discuss. 109:417–436.10.1039/a709130cSearch in Google Scholar

Cockell CS. 1999. Life on venus. Planet Space Sci. 47:1487–1501.10.1016/S0032-0633(99)00036-7Search in Google Scholar

Cockell C. S, Brack A., Wynn-Williams D. D, Baglioni P, Brandstätter F, Demets R, Edwards HGM, et al. 2007 Interplanetary Transfer of Photosynthesis: An Experimental Demonstration of A Selective Dispersal Filter in Planetary Island Biogeography, Astrobiology, 7, https://doi.org/10.1089/ast.2006.003810.1089/ast.2006.0038Search in Google Scholar PubMed

Cockell C.S, Less P. Lim D.S.S, Osinski G.R, Parnell J, Koeberl C, Pesonen L, and Salminen, J. 2005. Effects of asteroid and comet impacts on habitats for lithophytic organisms – a synthesis. Meteoritics Planet. Sci. 40(12), 1901–1914.Search in Google Scholar

Conrad R. 1999. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol Ecol. 28:193–202.10.1111/j.1574-6941.1999.tb00575.xSearch in Google Scholar

Conrad R. 2009. The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep. 1:285–292.10.1111/j.1758-2229.2009.00038.xSearch in Google Scholar

Covey C, Thompson SL, Weissman PR, MacCracken MC. 1994. Climatic effects of atmospheric dust from an asteroid or comet impact on Earth. Glob Planet Change. 9:263–273.10.1016/0921-8181(94)90020-5Search in Google Scholar

Cowan MK, Talaro KP. 2008. Microbiology: A Systems. Approach. McGraw-Hill Science.Search in Google Scholar

Craddock RA, Maxwell TA. 1993. Geomorphic evolution of the Martian highlands through ancient fluvial processes. J Geophys Res. 98(E2 25):3453–3468.10.1029/92JE02508Search in Google Scholar

Crick F. 1981. Life Itself. Its Origin and Nature. Simon & Schuster, New York.Search in Google Scholar

Damm E, Kiene R, Schwarz J, Falck E, Dieckmann G. 2008. Methane cycling in Arctic shelf water and its relationship with phytoplankton biomass and DMSP. Mar Chem. 109:45–59.10.1016/j.marchem.2007.12.003Search in Google Scholar

Damm E, Helmke E, Thoms S, Schauer U, Nöthig E, Bakker K, et al. 2010. Methane production in aerobic oligotrophic surface water in the central Arctic Ocean. Biogeosci. 7:1099–1108.10.5194/bg-7-1099-2010Search in Google Scholar

de Angelis MA, Lee C. 1994. Methane production during zooplankton grazing on marine phytoplankton. Limnol Oceanogr. 39:1298–1308.10.4319/lo.1994.39.6.1298Search in Google Scholar

Dehel T, Lorge F, Dickinson M. 2008. Uplift of microorganisms by electric fields above thunderstorms. J Electrostat. 66:463–466.10.1016/j.elstat.2008.04.014Search in Google Scholar

Delaney JS, Dyar MD. 2003. Comparison of synchrotron microXANES determination of Fe3+/ΣFe with Mossbauer values for clean mineral separates of pyroxene from Martian meteorites (abstract 1979). 34th Lunar and Planetary Science Conference, CD-ROM.Search in Google Scholar

Deleon-Rodriguez N, Lathem TL, Rodriguez RL, Barazesh JM, Anderson BE, Beyersdorf AJ, et al. 2013. Microbiome of the upper troposphere: species composition and prevalence, effects of tropical storms, and atmospheric implications. Proc Natl Acad Sci USA. 110:2575–2580.10.1073/pnas.1212089110Search in Google Scholar PubMed PubMed Central

Deppenmeier U, Müller V, Gottschalk G. 1996. Pathways of energy conservation in methanogenic archaea. Arch Microbiol. 165:149–163.10.1007/BF01692856Search in Google Scholar

De la Torre Noetzel R, Miller B, Cubero AZ, Sancho, LG, Jordão L, Rabbow E, et al. 2017. Survival of lichens on the ISS-II: ultra-structural and morphological changes of Circinaria gyrosa after space and Mars-like conditions. EANA2017: 17th European Astrobiology Conference, 14-17 August, 2017 in Aarhus, Denmark.Search in Google Scholar

De la Torre Noetzel R, Ortega García MV, Miller AZ, Bassy O, Granja C, Cubero B, et al. 2020. Lichen Vitality After a Space Flight on Board the EXPOSE-R2 Facility Outside the International Space Station: Results of the Biology and Mars Experiment. Astrobiol. 20(5):583–600.10.1089/ast.2018.1959Search in Google Scholar PubMed

De Vera J-P, Dulai S, Kereszturi A, Koncz L, Lorek A, Mohlmann D, et al. 2014. Results on the survival of cryptobiotic cyanobacteria samples after exposure to Mars-like environmental conditions. Int J Astrobiol. 13:35–44.10.1017/S1473550413000323Search in Google Scholar

De Vera J-P. 2012. Lichens as survivors in space and on Mars. Fungal Ecol. 5:472–479.10.1016/j.funeco.2012.01.008Search in Google Scholar

De Vera J-P, Alawi M, Backhaus T, Baqué M, Billi D, Böttger U, et al. 2019. Limits of Life and the Habitability of Mars: The ESA Space Experiment BIOMEX on the ISS. Astrobiol. 19(2):145–157.10.1089/ast.2018.1897Search in Google Scholar PubMed PubMed Central

Diehl RH. 2013. The airspace is habitat. Trends Ecol Evol. 28:377–379.10.1016/j.tree.2013.02.015Search in Google Scholar PubMed

Dighton J, Tatyana Tugay T, Zhdanova N. 2008. Fungi and ionizing radiation from radionuclides, FEMS Microbiol Lett. 281:109–120.Search in Google Scholar

DiGregorio B. E. 2002. Rock Varnish As A Habitat For Extant Life On Mars, Instruments, Methods, and Missions for Astrobiology IV; 4495, https://doi.org/10.1117/12.454750.10.1117/12.454750Search in Google Scholar

Dombrowski H. 1963. Bacteria from Paleozoic salt deposits. Annals of the New York Academy of Sciences, 108, 453.Search in Google Scholar

Donahue T.M., Hodges R.R. Jr. 1992. Past and present water budget of Venus. J. Geophys. Res. 97, 6083–6091.Search in Google Scholar

Dose K. 1988. The origin of life: More questions than answers. Interdiscip Sci Rev. 13:348–356.10.1179/isr.1988.13.4.348Search in Google Scholar

Dreibus G, Wänke H. 1985. Mars, a volatile-rich planet. Meteoritics. 20:367–381.Search in Google Scholar

Duran S, Coulthard TJ, Baynes ERC. 2019. Knickpoints in Martian channels indicate past ocean levels. Sci Rep. 9:15153.10.1038/s41598-019-51574-2Search in Google Scholar PubMed PubMed Central

Durvasula RV, Rao DVS. 2018. Extremophiles: From Biology to Biotechnology. CRC Press.10.1201/9781315154695Search in Google Scholar

Dyar MD, Mackwell SJ, Seaman SJ., Marchand GJ. 2004. Evidence for a wet, reduced Martian interior (abstract 1348). 35th Lunar and Planetary Science Conference, CD-ROM.Search in Google Scholar

Dyar MD, Treiman AH, Pieters CM, Hiroi T, Lane MD, O’Connor V. 2005. MIL 03346, the most oxidized Martian meteorite: a first look at spectroscopy, petrography, and mineral chemistry. J Geophys Res. 110:E09005, 2005JE00246.Search in Google Scholar

Earth Impact Database, 2020.Search in Google Scholar

Edgar LA, Fedo CM, Gupta S, Banham SG, Fraeman AA, Grotzinger JP, et al. 2020. A lacustrine paleoenvironment recorded at Vera Rubin ridge, Gale crater: Overview of the sedimentology and stratigraphy observed by the Mars Science Laboratory Curiosity rover. J Geophys Res - Planets. 125(3):e2019JE006307.Search in Google Scholar

Ehlmann BL, Mustard JF, Murchie SL, Bibring JP, Meunier A, Fraeman AA, et al. 2011. Subsurface water and clay mineral formation during the early history of Mars. Nature. 479:53–60.10.1038/nature10582Search in Google Scholar PubMed

Eigenbrode JL. Summons RE, Steele A, Freissinet C, Millan M, Navarro-González R, et al. 2018. Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars. Science. 360:1096–1101.10.1126/science.aas9185Search in Google Scholar PubMed

Eldredge N, Gould SJ. 1972. Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf TJM. Editor. Models in Paleobiology. San Francisco: Freeman Cooper. p. 82–115.10.5531/sd.paleo.7Search in Google Scholar

Elewa AMT, Joseph R. 2009. The History, Origins, and Causes of Mass Extinctions. J Cosmol. 2:201–220.Search in Google Scholar

El-Mashad M. 2013. Kinetics of methane production from the codigestion of switchgrass and Spirulina platensis algae. Biore-sour Technol. 132:305–312.10.1016/j.biortech.2012.12.183Search in Google Scholar

England C, Hrubes JD. 2004. Molecular oxygen mixing ratio and its seasonal variability in the Martian atmosphere, paper presented at Workshop on Oxygen in the Terrestrial Planets. NASA Technical Report. https://ntrs.nasa.gov/search.jsp?R=20040085415.Search in Google Scholar

Eppelbaum L, Kutasov I, Pilchin A. 2014. Thermal Properties of Rocks and Density of Fluids. In: Applied Geothermics. Lecture Notes in Earth System Sciences. Springer, Berlin, Heidelberg.10.1007/978-3-642-34023-9Search in Google Scholar

Epstein S, Mayeda T. 1953. Variation of O18 content of waters from natural sources. Geochim Cosmochim Acta. 4(5):213–224.10.1016/0016-7037(53)90051-9Search in Google Scholar

Erin DH. 2015. Early metazoan life: divergence, environment and ecology. Philos Trans R Soc B. 370(1684):20150036.Search in Google Scholar

Fairén AG. 2017. Icy Mars lakes warmed by methane. Nat Geosci. 10:717–718.10.1038/ngeo3037Search in Google Scholar

Fairén AG, Stokes CR, Davies NS, Schulze-Makuch D, Rodríguez JAP, Davila AF, et al. 2014. A cold hydrological system in Gale crater, Mars. Planet Space Sci. 93–94:101–118.10.1016/j.pss.2014.03.002Search in Google Scholar

Fajardo-Cavazos P, Link L, Melosh HJ, Nicholson WL. 2005. Bacillus subtilisspores on artificial meteorites survivehypervelocity atmospheric entry: implications for lithopan-spermia. Astrobiol. 5:726–736.10.1089/ast.2005.5.726Search in Google Scholar PubMed

Fajardo-Cavazosa P, Schuerger AC, Nicholson WL. 2007. Testing interplanetary transfer of bacteria between Earth and Mars as a result of natural impact phenomena and human spaceflight activities. Acta Astronaut. 60:534–540.10.1016/j.actaastro.2006.09.018Search in Google Scholar

Farmer CB, Davies DW, Holland AL, Laporte DD, Doms PE. 1977. Mars—Water vapor observations from the Viking orbiters. J Geophys Res. 82:4225–4248.10.1029/JS082i028p04225Search in Google Scholar

Farquhar J, Thiemens MH. 2000. Oxygen cycle of the Martian atmosphere-regolith system: Delta 17O of secondary phases in Nakhla and Lafayette. J Geophys Res. 105:11991–11998.10.1029/1999JE001194Search in Google Scholar

Farquhar J, Bao H, Thiemens M. 2000. Atmospheric influence of Earth’s earliest sulfur cycle. Science. 289:756–758.10.1126/science.289.5480.756Search in Google Scholar PubMed

Fassett CI, Head JW, 2008. Valley network-fed, open-basin lakes on Mars: Distribution and implications for Noachian surface and subsurface hydrology. Icarus. 198(1):37–56.10.1016/j.icarus.2008.06.016Search in Google Scholar

Fawdon P, Gupta S, Davis JM, Warner NH, Adler JB, Balme MR, et al. 2018. The Hypanis Valles delta: The last highstand of a sea on early Mars? Earth Planet Sci Lett. 500:225–241.Search in Google Scholar

Fazli P, Man CH, Shah UKM, Idis A. 2013. Characteristics of Methanogens and Methanotrophs in Rice Fields: A Review. AsPac J Mol Biol Biotechnol. 21(1):3–17.Search in Google Scholar

Fedorova AA, Montmessin F, Korablev O, Luginin M, Trokhimovskiy A, Belyaev DA, et al. 2020. Stormy water on Mars: The distribution and saturation of atmospheric water during the dusty season. Science. 367(6475):297–300.10.1126/science.aay9522Search in Google Scholar PubMed

Fielding MJ, Observations on the length of dormancy in certain plant infecting nematodes. Proc. Helminth. Soc. Wash. 1951(18):110–112.Search in Google Scholar

Formisano V, Atreya S, Encrenaz T, Ignatiev N, Giuranna M. 2004. Detection of methane in the atmosphere of Mars. Science. 306(5702):1758–1761.Search in Google Scholar

Fragkou V, Parker QA, Zijlstra AA, Crause L, Barker H. 2019. A high-mass planetary nebula in a Galactic open cluster. Nat Astron. 3:851–857.10.1038/s41550-019-0796-xSearch in Google Scholar

Franz HB, McAdam AC, Ming DW, Freissinet C, Mahaffy PR, Eldridge DL, et al. 2017. Large sulfur isotope fractionations in martian sediments at Gale crater. Nat Geosci. 10:658–662.10.1038/ngeo3002Search in Google Scholar

Franz, HB, Mahaffy PR, Webster CR, et al. 2020. Indigenous and exogenous organics and surface–atmosphere cycling inferred from carbon and oxygen isotopes at Gale crater. Nat Astron. 4:526–532.10.1038/s41550-019-0990-xSearch in Google Scholar

Franchi IA, Wright IP, Sexton AS, Pillinger CT. 1999. The oxygen isotopic composition of Earth and Mars. Meteorit Planet Sci. 34:657–661.10.1111/j.1945-5100.1999.tb01371.xSearch in Google Scholar

Fraser CM, et al. 1995. The Minimal Gene Complement of Mycoplasma genitalium. Science. 270:397–404.10.1126/science.270.5235.397Search in Google Scholar PubMed

Fritz J, Artemieva NA, Greshake A. 2005. Ejection of Martian Meteorites. Meteoritics & Planetary Science. 40(9–10):1393–1411.10.1111/j.1945-5100.2005.tb00409.xSearch in Google Scholar

Fröhlich-Nowoisky J, Pickersgill DA, Després VR, Pöschl U. 2009. High diversity of fungi in air particulate matter. Proc Natl Acad Sci USA. 106:12814–12819.10.1073/pnas.0811003106Search in Google Scholar PubMed PubMed Central

Frydenvang J, Gasda PJ, Hurowitz JA, Grotzinger JP, Wiens RC, Newsom HE, et al. 2017. Diagenetic silica enrichment and late-stage groundwater activity in Gale crater, Mars. Geophys Res Lett. 44:4716–4724.10.1002/2017GL073323Search in Google Scholar

Garwood RJ. 2012. Patterns In Palaeontology: The first 3 billion years of evolution. Palaeontol Online. 2(11):1–14.Search in Google Scholar

Gellert R, Rieder R, Brückner J, Clark BC, Dreibus G, Klingelhöfer G, et al. 2006. Alpha Particle X-Ray Spectrometer (APXS): Results fromGusev crater and calibration report. J Geophys Res Planets. 111:E02S05.10.1029/2005JE002555Search in Google Scholar

Geminale A, Formisano V, Sindoni G. 2011. Mapping methane in Martian atmosphere with PFS-MEX data. Planet Space Sci. 59(2–3):137–148.10.1016/j.pss.2010.07.011Search in Google Scholar

Gerday C., Glansdorff N. 2007. Physiology and Biochemistry of Extremophiles, ASM press.10.1128/9781555815813Search in Google Scholar

Gibson C., Schild R, Wickramasinghe NC. 2011. The origin of life from primordial planets. Int J Astrobiol. 10:83–98.10.1017/S1473550410000352Search in Google Scholar

Gillena E, Rimmera PB, Catling DC. 2020. Statistical analysis of Curiosity data shows no evidence for a strong seasonal cycle of martian methane. Icarus. 336:113407.10.1016/j.icarus.2019.113407Search in Google Scholar

Gladman B, Burns JA, Duncan M, Lee PC, Levison HF. 1996. The exchange of impact ejecta between terrestrial planets. Science. 271:1387–1392.10.1126/science.271.5254.1387Search in Google Scholar

Gladman B, Dones K, Levison HF, Burns JA. 2005. Impact seeding and reseeding in the inner solar system. Astrobiol. 5(4):483–496.10.1089/ast.2005.5.483Search in Google Scholar PubMed

Gomes R, Levison HF, Tsiganis K, Morbidelli A. 2005. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature. 435:466–469.10.1038/nature03676Search in Google Scholar PubMed

Goudge TA, Fassett CI, Head JW, Mustard JF, Aureli KL. 2016. Insights into surface runoff on early Mars from paleolake basin morphology and stratigraphy. Geology. 44(6):419–422.10.1130/G37734.1Search in Google Scholar

Graham LE, Graham JM, Wilcox LW, Cook ME. 2016. Algae. LJLM Press, Madison.Search in Google Scholar

Grant JA, Irwin RP, Grotzinger JP, Milliken RE, Tornabene LL, McEwen AS, et al. 2008. HiRISE imaging of impact megabreccia and sub-meter aqueous strata in Holden Crater, Mars. Geology. 36(3):195–198.10.1130/G24340A.1Search in Google Scholar

Griffin DW. 2004. Terrestrial microorganisms at an altitude of 20,000 m in Earth’s atmosphere. Aerobiologia. 20:135–140.10.1023/B:AERO.0000032948.84077.12Search in Google Scholar

Griffin DW, Kubilay N, Kocak M, Gray MA, Borden TC, Shinn EA. 2007. Airborne desert dust and aeromicrobiology over the Turkish Mediterranean coastline. Atmos Environ. 41:4050–4062.10.1016/j.atmosenv.2007.01.023Search in Google Scholar

Grin EA, Cabrol NA. 1997. Limnologic Analysis of Gusev Crater Paleo-lake, Mars. Icarus. 130(2):461–474.Search in Google Scholar

Grinspoon DH. 1993. Probing Venus’s cloud structure with Galileo NIMS. Planet Space Sci. 41:515–542.10.1016/0032-0633(93)90034-YSearch in Google Scholar

Grinspoon DH. 1997. Venus Revealed: A New Look Below the Clouds of Our Mysterious Twin Planet. Addison Wesley, Reading, MA (USA).Search in Google Scholar

Grinspoon DH, Bullock MA. 2007. Astrobiology and Venus exploration. In: Esposito LW, Stafan ER, Cravens TE. Editors. Exploring Venus as a Terrestrial Planet. American Geophysical Union, p. 191–206.Search in Google Scholar

Grotzinger JP, Bell III JF, Calvin W, Clark BC, Fike DA, Golombek M, et al. 2005. Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars. Earth Planet Sci Lett. 240:11–72.10.1016/j.epsl.2005.09.039Search in Google Scholar

Grotzinger JP, Sumner DY, Kah LC, Stack K, Gupta S, Edgar L, et al. 2014. A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars. Science. 343(6169):1242777.Search in Google Scholar

Grotzinger JP, Crisp JA, Vasavada AR, MSL Science Team. 2015. Curiosity’s mission of exploration at Gale crater. Elements. 11(1):19–26.10.2113/gselements.11.1.19Search in Google Scholar

Grotzinger JP, Gupta S, Malin MC, Rubin DM, Schieber J, Siebach K., et al. 2015. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale Crater, Mars. Science. 350(6257):aac7575.10.1126/science.aac7575Search in Google Scholar PubMed

Guo Q, Strauss H, Kaufman AJ, Schröder S, Gutzmer J, Wing BA, et al. 2009. Reconstructing Earth’s surface oxidation across the Archean–Proterozoic transition. Geology. 37(5):399–402.10.1130/G25423A.1Search in Google Scholar

Halevy I, Head III JW. 2014. Episodic warming of early Mars by punctuated volcanism. Nat Geosci. 7(12):865–868.10.1038/ngeo2293Search in Google Scholar

Hara T, Takagi K, Kajiura D. 2010. Transfer of Life-Bearing Meteorites from Earth to Other Planets. J Cosmol. 7:1731–1742.Search in Google Scholar

Harri A-M., Genzer M, Kemppinen O, Gomez-Elvira J, Haberle R, Polkko J, et al. 2014. Mars Science Laboratory relative humidity observations: Initial results. J Geophys Res - Planets. 119:2132–2147.10.1002/2013JE004514Search in Google Scholar PubMed PubMed Central

Haskin LA, Wang A, Jolliff BL, McSween HY, Clark BC, Des Marais DJ, et al. 2005. Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater. Nature. 436:66–69.10.1038/nature03640Search in Google Scholar PubMed

Hausrath EM, Ming DW, Rampe EB. 2018. Reactive transport and mass balance modeling of the Stimson sedimentary formation and altered fracture zones constrain diagenetic conditions at Gale crater, Mars. Earth Planet Sci Lett. 491:1–10.10.1016/j.epsl.2018.02.037Search in Google Scholar

Havig JR, Hamilton TL, Bachan A., Kump LR. 2017. Sulfur and carbon isotopic evidence for metabolic pathway evolution and a four-stepped Earth system progression across the Archean and Paleoproterozoic. Earth Sci Rev. 174:1–21.10.1016/j.earscirev.2017.06.014Search in Google Scholar

Hazael R, Fitzmaurice BC, Fogilia F, Appleby-Thomas GJ, McMilan PF. 2017. Bacterial survival following shock compression in the GigaPascal range. Icarus. 293:1–7.10.1016/j.icarus.2017.03.031Search in Google Scholar

Hazell PJ, Beveridge C, Groves K, Appleby-Thomas G. 2010. The shock compression of microorganism-loaded broths and emulsions: experiments and simulations. Int J Impact Eng. 37:433–440.10.1016/j.ijimpeng.2009.08.007Search in Google Scholar

Herkenhoff KE, Squyres SW, Arvidson R, Bass DS, Bell III JF, Bertelsen P, et al. 2004. Evidence from Opportunity’s Microscopic Imager for Water on Meridiani Planum, Science. 306:1727–1730.Search in Google Scholar

Hogancamp JV, Sutter B, Morris RV, Archer PD, Ming DW, Rampe EB, et al. 2018. Chlorate/Fe-bearing phase mixtures as a possible source of oxygen and chlorine detected by the sample analysis at Mars instrument in Gale Crater, Mars. J Geophys Res – Planets. 123:2920–2938.10.1029/2018JE005691Search in Google Scholar

Holland HD. 2006. The oxygenation of the atmosphere and oceans. Phil Trans Roy Soc B-Biol. Sci. 361:903–915.10.1098/rstb.2006.1838Search in Google Scholar PubMed PubMed Central

Holton JR, Haynes PH, McIntyre ME, Douglass AR, Rood RB, Pfister L. 1995. Stratosphere-troposphere exchange. Rev Geophys. 33:403–440.10.1029/95RG02097Search in Google Scholar

Hoover RB. 1997. Meteorites, Microfossils, and Exobiology in Instruments, Methods, and Missions for the Investigation of Extraterrestrial Microorganisms. In: Hoover RB. Editor. Proc SPIE. 3111:115–136.Search in Google Scholar

Hoover RB, Rozanov AY, Zhmur SI, Gorlenko VM. 1998. Further evidence of micro-fossils in carbonaceous chondrites, in: Hoover RB. Editor. Instruments, Methods and Missions for Astrobiology. Proc SPIE. 3441:203–215.10.1117/12.319839Search in Google Scholar

Hoover RB, Jerman G, Rozanov AY, Sipiera PB. 2004. Indigenous microfossils in carbonaceous meteorites. In: Hoover RB, Levin Gilbert V, Rozanov AY. Editors. Instruments, Methods, and Missions for Astrobiology. Proc SPIE. 5555:1–17.10.1117/12.566491Search in Google Scholar

Horgan J. 1991. In the beginning. Scientific American. 264:116–125.10.1038/scientificamerican0291-116Search in Google Scholar

Horneck G. 1993. Responses of Bacillus subtilis spores to space environment: Results from experiments in space. Orig Life Evol Biosph. 23:37–52.10.1007/BF01581989Search in Google Scholar

Horneck G, Becker H, Reitz G. 1994. Long-term survival of bacterial spores in space. Adv Space Res. 14:41–45.10.1016/0273-1177(94)90448-0Search in Google Scholar

Horneck G, Eschweiler U, Reitz G, Wehner J, Willimek R, Strauch G. 1995. Biological responses to space: results of the experiment Exobiological Unit of ERA on EURECA I. Adv Space Res. 16:105–118.10.1016/0273-1177(95)00279-NSearch in Google Scholar

Horneck G, Stoffler D, Ott S, Hornemann U, Cockell CS, Moeller R, et al. 2008. Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: first phase of lithopanspermia experimentally tested. Astrobiol. 8:17–44.10.1089/ast.2007.0134Search in Google Scholar PubMed

Horneck G., Stöffler D, Eschweiler U, Hornemann U. 2001a. Bacterial spores survive simulated meteorite impact. Icarus. 149(1):285–290.10.1006/icar.2000.6543Search in Google Scholar

Horneck G, Rettberg P, Reitz G, Wehner J, Eschweiler U, Strauch K, Panitz C, Starke V, Baumstark-Khan, C. 2001b. Orig Life Evol Biosph. 31:527–547.10.1023/A:1012746130771Search in Google Scholar

Horneck G, Mileikowsky C, Melosh HJ, Wilson JW, Cucinotta FA, Gladman B. 2002. Viable Transfer of Microorganisms in the solar system and beyond. In: Horneck G, Baumstark-Khan C. Astrobiology, Springer.Search in Google Scholar

Holmes AJ, Roslev P, McDonald IR, Iversen N, Henriksen K, Murrell JC. 1999. Characterization of Methanotrophic Bacterial Populations in Soils Showing Atmospheric Methane Uptake. Appl Environ Microbiol. 65(8):3312–3318.10.1128/AEM.65.8.3312-3318.1999Search in Google Scholar PubMed PubMed Central

Homann M. 2019. Earliest life on Earth: Evidence from the Barberton Greenstone Belt, South Africa. Earth Sci Rev. 196:102888.Search in Google Scholar

Homann M, Sansjofre P, Van Zuilen M, Heubeck C, Gong J, Killingsworth B, et al. 2018. Microbial life and biogeochemical cycling on land 3,220 million 1052 years ago. Nat Geosci. 11:665–671.10.1038/s41561-018-0190-9Search in Google Scholar

Hoyle F. 1982. Evolution from Space (The Omni Lecture). Enslow Publishers, USASearch in Google Scholar

Hoyle F, Wickramasinghe NC. 2000. Astronomical Origins of Life. Steps Towards Panspermia. Klewer Academic Publishers.10.1007/978-94-011-4297-7Search in Google Scholar

Humayun M, Nemchin A, Zanda B, Hewins RH, Grange M, Kennedy A. et al. 2013. Origin and age of the earliest Martian crust from meteorite NWA 7533. Nature. 503:513–516.10.1038/nature12764Search in Google Scholar

Hurowitz JA, McLennan SM, Tosca NJ, Ming DW, Schröder C. 2006. In situ and experimental evidence for acidic weathering of rocks and soils on Mars. J Geophys Res. 111:E02S19.10.1029/2005JE002515Search in Google Scholar

Hynek BM, Beach M, Hoke MRT, 2010. Updated global map of martian valley networks and implications for climate and hydro-logic processes. J Geophys Res - Planets. 115:E09008.10.1029/2009JE003548Search in Google Scholar

Imshenetsky AA, Lysenko SV, Kazakov GA. 1978. Upper boundary of the biosphere. Appl Environ Microbiol. 35:1–5.10.1128/aem.35.1.1-5.1978Search in Google Scholar

Ingersoll AP. 1969. The runaway greenhouse: A history of water on Venus. J Atmos Sci. 26:1191–1198.10.1175/1520-0469(1969)026<1191:TRGAHO>2.0.CO;2Search in Google Scholar

Irwin III RP, Howard AD, Craddock RA, Moore JM. 2005. An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development. J Geophys Res -Planets. 110(E12):E12S15.10.1029/2005JE002460Search in Google Scholar

Jakosky BM, Brain D, Chaffin M, Curry S, Deighan J, Grebowsky J, et al. 2018. Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus. 315:146–157.10.1016/j.icarus.2018.05.030Search in Google Scholar

Jagoutz E, Sorowka A, Vogel JD, Wenke H. 1994. ALH 84001: Alien or progenitor of the SNC family? Meteoritics. 29:478–479.Search in Google Scholar

Johansen A, Lambrechts M. 2017. Forming Planets via Pebble Accretion. Annu Rev Earth Planet Sci. 45(1):359–387.10.1146/annurev-earth-063016-020226Search in Google Scholar

Johnston DT, Poulton SW, Goldberg T, Sergeev VN, Podkovyrov V, Vorob’eva NG, et al. 2012. Late Ediacaran redox stability and metazoan evolution. Earth Planet Sci Lett. 335:25–35.10.1016/j.epsl.2012.05.010Search in Google Scholar

Jones D, Pejcha O, Romano P, Corradi LM. 2019. On the triple-star origin of the planetary nebula Sh 2-71. Mon Not R Astron Soc. 489(2):2195–2203.Search in Google Scholar

Jose MV. Morgado ER, Govezensky T, Aguilar I. 2010. How Universal is the Universal Genetic Code? A Question of ExtraTerrestrial Origins. J Cosmol. 5:854–874.Search in Google Scholar

Joseph R. 2000. Astrobiology, the Origins of Life, and the Death of Darwinism. University Press, California.Search in Google Scholar

Joseph R. 2009. Life on Earth Came from Other Planets. J Cosmol. 1:44–77.Search in Google Scholar

Joseph R. 2010a. Climate Change: The First Four Billion Years. The Biological Cosmology of Global Warming and Global Freezing. J Cosmol. 8:2000–2020.Search in Google Scholar

Joseph R. 2010b. Extinction, Metamorphosis, Evolutionary Apoptosis, and Genetically Programmed Species Mass Death. In: Wickramasinghe C. Editor. The Biological Big Bang. Science Publishers, Cambridge, MA (USA).Search in Google Scholar

Joseph R. 2014. Life on Mars: Lichens, Fungi, Algae. J Cosmol. 22:40–62.Search in Google Scholar

Joseph R. 2016. A high probability of life on Mars, the consensus of 70 experts. Cosmology 25, 1–25.Search in Google Scholar

Joseph R. 2019. Life on Venus and the Interplanetary Transfer of Biota From Earth. J Cosmol. 27 (1):191.Search in Google Scholar

Joseph RG, Dass RS, Rizzo V, Cantasano N, Bianciardi G. 2019. Evidence of Life on Mars? Journal of Astrobiology and Space Science Reviews. 1:40–81. Reprinted in: Beech M, Gordon R, Seckbach J. Editors. Astrobiology Perspectives on Life of the Universe, Wiley-Scrivener, Beverly, Massachusetts (USA).Search in Google Scholar

Joseph R, Graham L, Budel B, Jung P, Kidron GJ, Latif K, et al. 2020a. Mars: Algae, Lichens, Fossils, Minerals, Microbial Mats and Stromatolites, in Gale Crater. Journal of Astrobiology and Space Science Reviews. 3(1):40–111. Reprinted in: Beech M, Gordon R, Seckbach J. Editors. Astrobiology Perspectives on Life of the Universe. Wiley-Scrivener, Beverly, Massachusetts (USA).10.37720/jassr.03082020Search in Google Scholar

Joseph R, Armstrong R, Kidron G, Gibson CH, Schild R. 2020b. Life on Mars? Colonies of Mushroom-shaped specimens in Eagle Crater. J Astrobiol Space Sci Res. 5:88–126.Search in Google Scholar

Joseph R., Planchon O, Duxbury N.S, Latif K, Kidron G. J, Consorit L, Armstrong R. A, Gibson C. G, Schild, R. 2020c. Oceans, Lakes and Stromatolites on Mars. Advances in Astronomy, In press.10.1155/2020/6959532Search in Google Scholar

Joseph R, Armstrong R. 2020. Metazoan Fossils on Mars? Submitted (under peer review).Search in Google Scholar

Joseph R, Schild R. 2010a. Biological Cosmology and the Origins of Life in the Universe. J Cosmol. 10:40–75.Search in Google Scholar

Joseph R, Schild R. 2010b. Origins, Evolution, and Distribution of Life in the Cosmos: Panspermia, Genetics, Microbes, and Viral Visitors From the Stars. J Cosmol. 7:1616–1670.Search in Google Scholar

Joseph R, Wickramasinghe C. 2010. Diseases from Space. In: Wick-ramasinghe C. Editor. The Biological Big Bang. Science Publishers, Cambridge, MA (USA).Search in Google Scholar

Joseph R, Wickramasinghe C. 2011. Genetics Indicates Extraterrestrial Origins for Life: The First Gene. J Cosmol. 16(21):6832–6861.Search in Google Scholar

Kane SR, Gelino DM. 2012. The Habitable Zone and extreme planetary orbits. Astrobiol. 12(10):940–945.10.1089/ast.2011.0798Search in Google Scholar

Kankaala P, Kaki T, Ojala A. 2003. Quality of detritus impacts on spatial variation of methane emissions from littoral sediment of a boreal lake. Archiv für Hydrobiologie. 157:47–66.10.1127/0003-9136/2003/0157-0047Search in Google Scholar

Karlsson HR, Clayton RN, Gibson EK Jr., Mayeda TK. 1992. Water in SNC meteorites—Evidence for a martian hydrosphere. Science. 255:1409–1411.10.1126/science.11537889Search in Google Scholar

Kasting JF. 1998. Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus. 74:472–494.10.1016/0019-1035(88)90116-9Search in Google Scholar

Kasting JF, Whitmire DP, Reynolds RT. 1993. Habitable zones around main sequence stars. Icarus. 101(1):108–128.Search in Google Scholar

Kasting JF, Kopparapu R, Ramirez RM, Harman CE. 2014. Remote life-detection criteria, habitable zone boundaries, and the frequency of Earth-like planets around M and late K stars. PNAS. 111(35):12641–12646.10.1073/pnas.1309107110Search in Google Scholar PubMed PubMed Central

Kato C, Qureshi MH. 1999. Pressure Response in Deep-sea Piezophilic Bacteria. J Molec Microbiol Biotechnol. 1(1):87–92.Search in Google Scholar

Kato C, Takai K. 2000. Microbial diversity of deep-sea extremophiles-Piezophiles, Hyperthermophiles, and sub-surface microorganisms. Biol Sci Space. 14(4):341–352.10.2187/bss.14.341Search in Google Scholar PubMed

Kaźmierczak J. 2016. Ancient Martian biomorphs from the rim of Endeavour Crater: similarities with fossil terrestrial microalgae. In: Rozhnov SV. Editor. Paleontology, Stratigraphy, Astrobiology, in commemoration of 80th anniversary of A. Yu. Rozanov. Borissiak Paleontological Institute RAS, Moscow, p. 229–242.Search in Google Scholar

Kaźmierczak J. 2020. Conceivable Microalgae-like Ancient Martian Fossils and Terran Analogues: MER Opportunity Heritage. J Astrobiol Outreach. 8(1):167.Search in Google Scholar

Keeling RF, Shertz SR. 1992. Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle. Nature. 356:723–727.Search in Google Scholar

Keppler F, Vigano I, McLeod A, Ott U, Früchtl M, Röckmann T. 2012. Ultraviolet-radiation-induced methane emissions from meteorites and the Martian atmosphere. Nature. 486(7401):93–96.Search in Google Scholar

Kidron GJ, Zohar M. 2014. Wind speed determines the transition from biocrust-stabilized to active dunes. Aeolian Res. 15:261–267.10.1016/j.aeolia.2014.04.006Search in Google Scholar

Kieffer HH, Jakosky BM, Snyder CW. 1992. The planet Mars: From antiquity to present, in Mars. In: Kieffer HH et al. Editors. Univ. of Ariz. Press, Tucson, Ariz. (USA), p. 1–33.Search in Google Scholar

Kim H, Takayama K, Hirose N., Onitsuka G, Yoshida T, Yanagi T. 2019. Biological modulation in the seasonal variation of dissolved oxygen concentration in the upper Japan Sea. J Oceanogr. 75:257–271.10.1007/s10872-018-0497-6Search in Google Scholar

Kite ES, Sneed J, Mayer DP, Wilson SA. 2017. Persistent or repeated surface habitability on Mars during the late Hesperian-Amazonian. Geophys Res Lett. 44(9):3991–3999.10.1002/2017GL072660Search in Google Scholar

Kite ES, Williams JP, Lucas A, Aharonson O. 2014. Low palaeopres-sure of the martian atmosphere estimated from the size distribution of ancient craters. Nat Geosci. 7(5):335–339.10.1038/ngeo2137Search in Google Scholar

Kite ES, Mayer DP, Wilson SA, Davis JM, Lucas AS, Stucky de Quay G. 2019. Persistence of intense, climate-driven runoff late in Mars history. Sci Adv. 5:eaav7710.Search in Google Scholar

Kontorovich AE et al. 2008. A section of Vendian in the east of West Siberian Plate (based on data from the Borehole Vostok 3), Russian Geology and Geophysics 49(12):932-939 DOI: 10.1016/j.rgg.2008.06.012.10.1016/j.rgg.2008.06.012Search in Google Scholar

Konesky G. 2009. Can Venus shed microorganisms? Proc. SPIE 7441, Instruments and Methods for Astrobiology and Planetary Missions XII, 74410H (3 September 2009).10.1117/12.828643Search in Google Scholar

Korablev O, Vandaele AC, Montmessin F, Fedorova AA, Trokhimovskiy A, Forget F, et al. 2019. No Detection of Methane on Mars from Early ExoMars Trace Gas Orbiter Observations. Nature. 568:517–520.10.1038/s41586-019-1096-4Search in Google Scholar PubMed

Kring DA, Cohen BA. 2002. Cataclysmic bombardment throughout the inner Solar System 3.9-4.0 Ga. J Geophys Res – Planets. 107(E2, 5009):4–10.Search in Google Scholar

Kritzberg ES, Cole JJ, Pace ML, Graneli W, Blade DL. 2004. Autochthonous versus allochthonous carbon sources of bacteria: results from whole-lake C-13 addition experiments. Limnol Oceanogr. 49:588–596.10.4319/lo.2004.49.2.0588Search in Google Scholar

Kritzberg ES, Cole JJ, Pace MM, Graneli W. 2005. Does autochthonous primary production drive variability in bacterial metabolism and growth efficiency in lakes dominated by terrestrial C inputs? Aquat Microb Ecol. 38:103–111.Search in Google Scholar

Krasnopolsky VA, Maillard JP, Owen TC. 2004. Detection of methane in the Martian atmosphere: Evidence for life? Icarus. 172(2):537–547.10.1016/j.icarus.2004.07.004Search in Google Scholar

Krupa TA. 2017. Flowing water with a photosynthetic life form in Gusav Crater on Mars. Lunar Planet Soc, XLVIII.Search in Google Scholar

Klingelhöfer G, Morris RV, De Souza Jr. PA, Rodionov D, Schröder C. 2006. Two Earth years of Mössbauer studies of the surface of Mars with MIMOS II. Hyperfine Interact. 170:169–177.10.1007/s10751-007-9508-5Search in Google Scholar

Ksanfomality LW. 2013. An Object of Assumed Venusian Flora. Dokl Phys. 58(5):204–206.10.1134/S1028335813050066Search in Google Scholar

Kump LR. 2008. The rise of atmospheric oxygen. Nature. 451:277–278.10.1038/nature06587Search in Google Scholar PubMed

Kuppers BO. 1990. Information and the origin of life. MIT Press, Cambridge, MA (USA).Search in Google Scholar

Krupa TA. 2017. Flowing water with a photosynthetic life form in Gusav Crater on Mars. Lunar Planet Soc, XLVIII.Search in Google Scholar

Lammer H, Lichtenegger HIM, Kolba C., Ribas I, Guinan EF, Abart R, et al. 2003. Loss of water from Mars:: Implications for the oxidation of the soil. Icarus. 165(1):9–2.Search in Google Scholar

Lenhart K, Bunge M, Ratering S, Neu TR, Schüttmann I, Greule M, et al. 2012. Evidence for methane production by saprotrophic fungi. Nat Commun. 3:1046.10.1038/ncomms2049Search in Google Scholar PubMed

Lenhart K, Klintzsch T, Langer G, Nehrke G, Bunge M, Schnell S, et al. 2016. Evidence for methane production by the marine algae Emiliania huxleyi. Biogeosci. 13:3163–3174.10.5194/bg-13-3163-2016Search in Google Scholar

Lanza NL, Wiens RC, Arvidson RE, Clark BC, Fischer WW, Gellert R, et al. 2016. Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars. Geophys Res Lett. 43(14):7398–7407.10.1002/2016GL069109Search in Google Scholar

Lanza NL. 2015. Oxidation Of Manganese At Kimberley, Gale Crater: More Free Oxygen. In: Lanza NL et al. Editors. Mars’ Past? Lunar And Planetary Science And Exploration, Chemistry And Materials (General). 46th Lunar and Planetary Science Conference, March 16, 2015 - March 20, 2015, The Woodlands, TX, USA.Search in Google Scholar

Laskar J, Joutel F, Robutel P. 1993. Stabilization of the Earth’s obliquity by the Moon. Nature. 361:615–617.10.1038/361615a0Search in Google Scholar

Lefèvre F, Forget F. 2009. Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics. Nature. 460(7256):720–723.Search in Google Scholar

Lenton TM, Boyle RA, Poulton SW, Shields-Zhou G, Butterfield NJ. 2014. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nat Geosci. 7:257–265.10.1038/ngeo2108Search in Google Scholar

Leshin LA, Epstein S, Stolper EM. 1996. Geochim Cosmochim Acta. 60(14):2635–2650.10.1016/0016-7037(96)00122-6Search in Google Scholar

Levin G, Straat PA. 1976. Viking Labeled Release Biology Experiment: Interim Results. Science. 194:1322–1329.10.1126/science.194.4271.1322Search in Google Scholar

Levin GV, Straat PA. 1977. Life on Mars? The Viking labeled release experiment. Biosyst. 9(2–3):165–174.10.1016/0303-2647(77)90026-0Search in Google Scholar

Levin GV, Straat PA. 2016. The Case for Extant Life on Mars and its Possible Detection by the Viking Labeled Release Experiment. Astrobiol. 16(10):798–810.10.1089/ast.2015.1464Search in Google Scholar

Levin GV, Straat PA, Benton WD. 1978. Color and Feature Changes at Mars Viking Lander Site. J Theor Biol. 75:381–390.10.1016/0022-5193(78)90342-9Search in Google Scholar

Levison HF, Dones L, Chapman CR, Stern SA, Duncan MJ, Zahnle K. 2001. Could the Lunar “Late Heavy Bombardment” Have Been Triggered by the Formation of Uranus and Neptune? Icarus. 151(2):286–306.Search in Google Scholar

Levison HF, Thommes EW, Duncan MJ, Dones LA. 2002. A Fairy Tale about the Formation of Uranus and Neptune and the Lunar Late Heavy Bombardment. In: Caroff L, Moon LJ, Backman D, Praton E. Editors. Debris Disks and the Formation of Planets: A Symposium in Memory of Fred Gillett, Tucson: Arizona, 11-13 April 2002, p. 152–167.Search in Google Scholar

Limaye SJ, Mogul R, Smith DJ, Ansari AH, Słowik GP, Vaishampayan P. 2018. Venus’ Spectral Signatures and the Potential for Life in the Clouds. Astrobiol. 18(9):1181–1198.10.1089/ast.2017.1783Search in Google Scholar PubMed PubMed Central

Lin CS, Chou TL, Wu JT. 2013. Biodiversity of soil algae in the farmlands of mid-Taiwan. Bot Stud. 54(41).10.1186/1999-3110-54-41Search in Google Scholar PubMed PubMed Central

Lin CS, Wu JT. 2014. Environmental factors affecting the diversity and abundance of soil photomicrobes in arid lands of subtropical Taiwan. Geomicrobiol J. 31(4):350–359.10.1080/01490451.2013.828135Search in Google Scholar

Lissauer J.L, 1993. Planet formation, Annual review of astronomy and astrophysics. Vol. 31 (A94-12726 02-90), p. 129–174.10.1146/annurev.aa.31.090193.001021Search in Google Scholar

Lyons TW, Reinhard CT, Planavsky NJ. 2014. The rise of oxygen in Earth’s early ocean and atmosphere. Nature. 506:307–315.10.1038/nature13068Search in Google Scholar PubMed

Lugmair G.W. Shukolyukov A. 2001. Early Solar System events and timescales. Meteorit Planet Sci. 36:1017–1026.10.1111/j.1945-5100.2001.tb01941.xSearch in Google Scholar

Mahaney WC, Dohm J. 2010. Life on Mars? Microbes in Mars-like Antarctic Environments, J Cosmol. 5:951–958.Search in Google Scholar

Malin MC, Edgett KS. 2000. Sedimentary Rocks of Early Mars. Science. 290:1927–1937.10.1126/science.290.5498.1927Search in Google Scholar PubMed

Malin MC, Edgett KS. 2003. Evidence for persistent flow and aqueous sedimentation on early Mars. Science. 302(5652):1931–1934.Search in Google Scholar

Man-Yin T, Yao W, Tse K. 2020. Oxidized silver cups can skew oxygen isotope results of small samples. Exp Results. 1(e12):1–6.10.1017/exp.2020.15Search in Google Scholar

Manning CE, Mojzsis SJ, Harrison TM. 2006. Geology. age and origini of supracrustral rocks at Akilia, West Greenland. Am J Sci. 306:303–366.Search in Google Scholar

Marquis RE, Shin SY. 1994. Mineralization and responses of bacterial spores to heat and oxidative agents. FEMS Microbiol Rev. 14(4):375–379.10.1111/j.1574-6976.1994.tb00111.xSearch in Google Scholar PubMed

Martel J, Young D, Peng H-H, Wu C-W, Young J D. 2012. Biomimetic Properties of Minerals and the Search for Life in the Martian Meteorite ALH84001-042711-10540. Annu Rev Earth Planet Sci. 40:167–193.10.1146/annurev-earth-042711-105401Search in Google Scholar

Martínez G, Fischer ME, Rennó NO, Sebastián E, Kemppinen O, Bridges N, et al. 2015. Likely frost events at Gale crater: Analysis from MSL/REMS measurements. Icarus. 280:93–102.10.1016/j.icarus.2015.12.004Search in Google Scholar

Martínez GM, Renno NO. 2013. Water and Brines on Mars: Current Evidence and Implications for MSL. Space Sci Rev. 75(1–4):29–51.10.1007/s11214-012-9956-3Search in Google Scholar

Martínez GM, Newman CN, De Vicente-Retortillo A, Fischer E, Renno NO, Richardson MI, et al. 2017. The Modern Near-surface Martian Climate: A Review from In-situ Meteorological data from Viking to Curiosity. Space Sci Rev. 212:295–338.10.1007/s11214-017-0360-xSearch in Google Scholar

Martín-Torres FJ, Zorzano MP, Valentín-Serrano P, Harri AM, Genzer M, Kemppinen O, et al. 2015. Transient liquid water and water activity at Gale crater on Mars. Nature. 8:357–361.Search in Google Scholar

Masson P, Carr MH, Costard F, Greeley R, Hauber E, Jauman R. 2001. Geomorphologic Evidence for Liquid Water. Space Sci Rev. 96:333–364.10.1023/A:1011913809715Search in Google Scholar

Mastrapa RME, Glanzberg H, Head, JN, Melosh HJ, Nicholson WL. 2001. Survival of bacteria exposed to extreme acceleration: implications for panspermia. Earth Planet Sci Lett. 189(30):1–8.Search in Google Scholar

Masursky H, Batson RM, Carr MH, McCauley JF, Milton DJ, Soderblom LA, et al. 1972. Mariner 9 Mars television experiment. Bull Am Astron Soc. 4:356.Search in Google Scholar

Matsubara Y, Howard A.D, Gochenour JP. 2013. Hydrology of early mars: valley network incision. J Geophys Res - Planets. 118:1365–1387.10.1002/jgre.20081Search in Google Scholar

Mautner MN. 1997. Biological potential of extraterrestrial materials. 1. Nutrients in carbonaceous meteorites and effects on biological growth. Planet Space Sci. 45:653–664.10.1006/icar.1997.5786Search in Google Scholar PubMed

Mautner MN. 2002. Planetary bioresources and astroecology. 1. Planetary microcosm bioassays of Martian and carbonaceous chondrite materials: Nutrients, electrolyte solutions, and algal and plant responses. Icarus. 158:72–86.Search in Google Scholar

McLean RJC, Welsh AK, Casasanto VA. 2006. Microbial survival in space shuttle crash. Icarus. 181:323–325.10.1016/j.icarus.2005.12.002Search in Google Scholar PubMed PubMed Central

McLean RJC, McLean MAC. 2010. Microbial survival mechanisms and the interplanetary transfer of life through space. J Cosmol. 7:1802–1820.Search in Google Scholar

McLennan SM, Anderson RB, Bell III JF, Bridges JC, Calef III F, Campbell JL, et al. 2014. Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, 558 Gale Crater, Mars. Science. 343(6169):1244734.Search in Google Scholar

McEwen AS, Dundas CM, Mattson SS, Toigo AD, Ojha L, Wray JJ, et al. 2013. Recurring slope lineae in equatorial regions of Mars. Nature Geosci. 7:53–58.10.1038/ngeo2014Search in Google Scholar

McKay CP. 1996. Oxygen and the Rapid Evolution of Life on Mars. In: Chela-Flores J, Raulin F. Editors. Chemical Evolution: Physics of the Origin and Evolution of Life. Springer, Dordrecht.10.1007/978-94-009-1712-5_15Search in Google Scholar

McKay CP. 2010. An Origin of Life on Mars. Cold Spring Harb Perspect Biol. 2(4):a003509.10.1101/cshperspect.a003509Search in Google Scholar PubMed PubMed Central

McKay DS, Gibson EK, Thomas-Keprta KL, Vali H, Romanek CS, Clemett SJ, et al. 1996. Search for past life on Mars: possible relic biogenic activity in martian meteorite ALH84001. Science. 273:924–930.10.1126/science.273.5277.924Search in Google Scholar PubMed

McKay DS, Thomas-Keprta KL, Clemett SJ, Gibson Jr EK, Spencer L, Wentworth SJ. 2009. Life on Mars: new evidence from martian meteorites. Instruments and Methods for Astrobiology and Planetary Missions. 7441:744102.10.1117/12.832317Search in Google Scholar

McLean RJC, Welsh AK, Casasanto VA. 2006. Microbial survival in space shuttle crash. Icarus. 181:323–325.10.1016/j.icarus.2005.12.002Search in Google Scholar PubMed PubMed Central

McLean RJC, McLean MAC. 2010. Microbial survival mechanisms and the interplanetary transfer of life through space. J Cosmol. 7:1802–1820.Search in Google Scholar

McLennan SM, Bell III JF, Calvin WM, Christensen PR, Clark BC, de Souza PA, et al. 2005. Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars. Earth Planet Sci Lett. 240:95–121.10.1016/j.epsl.2005.09.041Search in Google Scholar

McMahon S, Bosak T, Grotzinger JP, Milliken RE, Summons RE, Daye M, et al. 2018. A Field Guide to Finding Fossils on Mars. J Geophys Res - Planets. 123:1012–1040.10.1029/2017JE005478Search in Google Scholar PubMed PubMed Central

McSween HY, Arvidson RE, Bell III JF, Blaney D, Cabrol NA, Christensen PR, et al. 2004. Basaltic rocks analyzed by the Spirit Rover in Gusev crater. Science. 305:842–845.10.1126/science.3050842Search in Google Scholar

McSween Jr. HY, Taylor GJ, Wyatt MB. 2009. Elemental composition of the Martian crust. Science. 324(5928):736–739.Search in Google Scholar

Mellon MT, Phillips RJ. 2001. Recent gullies on Mars and the source of liquid water. J Geophys Res. 106(E10):23165–23180.10.1029/2000JE001424Search in Google Scholar

Mellon MT, Arvidson RE, Sizemore HG, Searls ML, Blaney DL, Cull S, et al. 2009. Ground ice at the phoenix landing site: stability state and origin. J Geophys Res. 114(E1):0007.10.1029/2009JE003417Search in Google Scholar

Melosh H. 1988. The rocky road to panspermia. Nature. 332:687–688.10.1038/332687a0Search in Google Scholar PubMed

Melosh HJ. 1989. Impact Cratering – a geological process. Oxford University Press, Oxford.Search in Google Scholar

Melosh HJ. 2003. Exchange of Meteorites (and Life?) Between Stellar Systems. Astrobiol. 3:207–215.10.1089/153110703321632525Search in Google Scholar PubMed

Messenger DJ, McLeod AR, Fry SC. 2009. The role of ultraviolet radiation, photosensitizers, reactive oxygen species and ester groups in mechanisms of methane formation from pectin. Plant Cell Environ. 32:1–9.10.1111/j.1365-3040.2008.01892.xSearch in Google Scholar PubMed

Meyer C, Fritz J, Misgaiski M, Stöffler D, Artemieva NA, Horne-mann U, et al. 2011. Shock experiments in support of the lithopanspermia theory: the influence of host rock composition, temperature, and shock pressure on the survival rate of endolithic and epilithic microorganisms. Meteorit Planet Sci. 46:701–718.10.1111/j.1945-5100.2011.01184.xSearch in Google Scholar

Meteoritical Bulletin Database. 2020.Search in Google Scholar

Metz JM, Grotzinger JP, Mohrig D, Milliken R, Prather B, Pirmez C, et al. 2009. Sublacustrine depositional fans in southwest Melas Chasma. J Geophys Res - Planets. 114(10):E10002.10.1029/2009JE003365Search in Google Scholar

Mileikowsky C, Cucinotta FA, Wilson JW, Gladman B, Horneck G, Lindegren L, et al. 2000a. Natural transfer of viable microbes in space. Part 1: From Mars to Earth and Earth to Mars. Icarus. 145:391–427.10.1006/icar.1999.6317Search in Google Scholar

Mileikowsky C, Cucinotta FA, Wilson JW, Gladman B, Horneck G, Lindegren L, et al. 2000b. Risks threatening viable transfer of microbes between bodies in our solar system. Planet Space Sci. 48:1107–1115.10.1016/S0032-0633(00)00085-4Search in Google Scholar

Miller SL, Urey HC. 1959a. Origin of Life. Science. 130:1622–1624.10.1126/science.130.3389.1622-aSearch in Google Scholar PubMed

Miller SL, Urey HC. 1959b. Organic compound synthesis on the primitive earth. Science. 130:245–251.10.1126/science.130.3370.245Search in Google Scholar PubMed

Ming D, Gellert WR, Morris RV, Arvidson RE, Brückner J, Clark BC, et al. 2008. Geochemical properties of rocks and soils in Gusev Crater, Mars: Results of the Alpha Particle X-Ray Spectrometer from Cumberland Ridge to Home Plate. J Geophys Res - Planets. 113:E12S39.Search in Google Scholar

Mitchell FJ, Ellis WL. 1971. Surveyor III: Bacterium isolated from lunar retrieved TV camera. In: Levinson AA. Editor. Proceedings of the second lunar science Conference. MIT press, Cambridge (USA).Search in Google Scholar

Möhler O, DeMott PJ, Vali G, Levin Z. 2007. Microbiology and atmospheric processes: The role of biological particles in cloud physics. Biogeosci Discuss. 4:2559–2591.10.5194/bg-4-1059-2007Search in Google Scholar

Mojzsis SJ, Arrhenius G, McKeegan KD, Harrison TM, Nutman AP, Friend CRL. 1996. Evidence for life on Earth before 3,800 million years ago. Nature. 384:55–59.10.1038/384055a0Search in Google Scholar PubMed

Monteith DT, Stoddard JL, Evans CD, de Wit HA, Forsius M, Hogasen T, et al. 2007. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature. 450:537–539.10.1038/nature06316Search in Google Scholar PubMed

Moore TE, Horwitz JL. 1998. Thirty Years of Ionospheric Outflow: Causes and Consequences. American Geophysical Union. San Francisco, December 1998.Search in Google Scholar

Moores JE, Lemmon MT, Rafkin SCR, Francis R, Pla-Garcia J, De La Torre Juárez M, et al. 2015. Atmospheric movies acquired at the Mars Science Laboratory landing site: Cloud morphology, frequency and significance to the Gale Crater water cycle and Phoenix mission results. Adv Space Res. 55:2217–2238.10.1016/j.asr.2015.02.007Search in Google Scholar

Morris RV, Klingelhöfer G, Schröder C, Rodionov DS, Yen A, Ming DW, et al. 2006a. Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit’s journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills. J Geophys Res. 111:E02S13.Search in Google Scholar

Morris RV, Klingelhöfer G, Schröder C, Rodionov DS, Yen A, Ming DW, et al. 2006b. Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity’s journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits. J Geophys Res. 111:E12S15.Search in Google Scholar

Mullin P, Shuerger A,Powers, T, 2002. Nematodes of Haughton Crater. Nematology 4, 270 4, 270Search in Google Scholar

Murchie SL, Mustard JF, Ehlmann BL, Milliken RE, Bishop JL, McKeown NK, et al. 2009. A synthesis of Martian aqueous mineral-ogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter. J Geophys Res. 114:E00D06.10.1029/2009JE003342Search in Google Scholar

Mustard JF, Poulet F, Ehlmann BL, Milliken R, Fraeman A. 2012. Sequestration of volatiles in the Martian crust through hydrated minerals: A significant planetary reservoir of water. 43rd Lunar and Planetary Sci. Conf., Abstract No. 1539, Lunar and Planetary Institute (LPI), Houston, Tex. (USA).Search in Google Scholar

Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, Moran NA, et al. 2006. The 160-Kilobase Genome of the Bacterial Endosymbiont Carsonella. Science. 314(5797):267.Search in Google Scholar

Nemchin AA, Whitehouse MJ, Menneken M, Geisler T, Pidgeon RT, Wilde SA. 2008. A light carbon reservoir recorded in zircon-hosted diamond from the Jack Hills. Nature. 454:92–95.10.1038/nature07102Search in Google Scholar PubMed

Nguyen AV, Baldridge AM, Thomson BJ. 2014. Microbial Analysis of Australian Dry Lake Cores; Analogs For Biogeochemical Processes. AGU Fall Meeting 2014, abstract id. P33C-4039.Search in Google Scholar

Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P. 2000. Resistance of Bacillus Endospores to Extreme Terrestrial and Extraterrestrial Environments. Microbiol Mol Biol Rev. 64:548–572.10.1128/MMBR.64.3.548-572.2000Search in Google Scholar PubMed PubMed Central

Nicholson WL, Setlow B, Setlow P. 2003. UV photochemistry of DNA in vitro and in Bacillus subtilis spores at earth-ambient and low atmospheric pressure: implications for spore survival on other planets or moons in the solar system. Astrobiol. 2:417–425.10.1089/153110702762470518Search in Google Scholar PubMed

Nicholson WL, Schuerger AC., Setlow P. 2005. The solar UV environment and bacterial spore UV resistance: considerations for Earth-to-Mars transport by natural processes and human spaceflight. Mutat Res. 571:249–264.10.1016/j.mrfmmm.2004.10.012Search in Google Scholar PubMed

Nicholson WL, Krivushin K, Gilichinsky D, Schuerger AC. 2013. Growth of Carnobacterium spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for Earth microbes on Mars. PNAS. 110(2):666–671.10.1073/pnas.1209793110Search in Google Scholar PubMed PubMed Central

Nickerson CA, Ott CM, Wilson JW, Ramamurthy R, Pierson DL. 2004. Microbial responses to microgravity and other low-shear environments. Microbiol Mol Biol Rev. 68:345–361.10.1128/MMBR.68.2.345-361.2004Search in Google Scholar PubMed PubMed Central

Niles P, Michalski J. 2009. Meridiani Planum sediments on Mars formed through weathering in massive ice deposits. Nature Geosci. 2:215–220.10.1038/ngeo438Search in Google Scholar

Noffke N. 2015. Ancient Sedimentary Structures in the < 3.7b Ga Gillespie Lake Member, Mars, That Compare in macroscopic Morphology, Spatial associations, and Temporal Succession with Terrestrial Microbialites. Astrobiol. 15(2):1–24.10.1089/ast.2014.1218Search in Google Scholar PubMed

Novikova N. 2009. Mirobiological research on board the ISS, Planetary Protection. The Microbiological Factor of Space Flight. Institute for Biomedical Problems, Moscow, Russia.Search in Google Scholar

Novikova, N, Deshevaya E, Poddubko S. 2016. Long-term space-flight and microbiological safety issues. Space Journal. 2(8): https://room.eu.com/article/long-term-spaceflight-andmicrobiological-safety-issuesSearch in Google Scholar

Nutman AP, Bennett VC, Friend CRL, Van Kranendonk MJ, Chivas AR. 2016. Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature. 537:535–538.10.1038/nature19355Search in Google Scholar PubMed

Nyquist LE, Bansal BM, Wiesmann H, Shih C-Y. 1995. “Martians” young and old: Zagami and ALH84001 (abstract). Lunar Planet Sci. XXVI:1065–1066.Search in Google Scholar

Nyquist LE., Bogard D, Shih C-Y., Greshake A, Stöffler D, Eugster O. 2001. Ages and Geologic Histories of Martian Meteorites. In: Kallenbach R, Geiss J, Hartmann WK. Editors. Chronology and Evolution of Mars. Springer, New York, p. 105–164.Search in Google Scholar

Oehler DZ. 2013. A Periglacial Analog for Landforms in Gale Crater, Mars. Technical Report, Lunar and Planetary Science Conference; March 18, 2013 - March 22, 2013. The Woodlands, TX (USA).Search in Google Scholar

Oliver T, Sánchez-Baracaldo P, Larkum AW, Rutherford AW, Cardona T. Origin of photosynthetic water oxidation at the dawn of life. Submitted: doi: https://doi.org/10.1101/2020.02.28.969766.10.1101/2020.02.28.969766Search in Google Scholar

Ohtomo Y, Kakegawa T, Ishida A, Nagase T, Rosing MT. 2014. Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks. Nat Geosci. 7:25–28.10.1038/ngeo2025Search in Google Scholar

Olsson-Francis K, de la Torre R, Towner MC, Cockell CS. 2009. Survival of akinetes (resting-state cells of cyanobacteria) in low Earth orbit and simulated extraterrestrial conditions. Orig Life Evol Biosp. 39(6):565–579.10.1007/s11084-009-9167-4Search in Google Scholar PubMed

O’Neil J, Carlson RW, Francis D, Stevenson RK. 2008. Neodymium-142 Evidence for Hadean Mafic Crust. Science. 321(5897):1828–1831.Search in Google Scholar

Onofri S, de la Torre R, de Vera J-P, Ott S, Zucconi L, Selbmann L, et al. 2012. Survival of rock-colonizing organisms after 1.5 years in outer space. Astrobiol. 12:508–516.Search in Google Scholar

Osman S, Peeters Z, La Duc MT, Mancinelli R, Ehrenfreund P, Venkateswaran K. 2008. Effect of shadowing on survival of bacteria under conditions simulating the Martian atmosphere and UV radiation. Appl Environ Microbiol. 74:959–970.10.1128/AEM.01973-07Search in Google Scholar PubMed PubMed Central

Oyama VI, Berdahl BJ. 1977. The Viking Gas Exchange experiment results from Chryse and Utopia surface samples. J Geophys Res. 82(28):4669–4676.10.1029/JS082i028p04669Search in Google Scholar

Pace G, Pasquini L. 2004. The age-activity-rotation relationship in solar-type stars. Astron Astrophys. 426(3):1021–1034.Search in Google Scholar

Pacelli C, Selbmann L, Zucconi L, De Vera JPP, Rabbow E, Horneck G, et al. 2016. BIOMEX experiment: Ultrastructural alterations, molecular damage and survival of the fungus Cryomyces antarcticus after the Experiment Verification Tests. Orig Life Evol Biosph. 47(2):187–202.10.1007/s11084-016-9485-2Search in Google Scholar PubMed

Papineau D, Mojzsis SJ, Schmitt AK. 2007. Multiple sulfur isotopes from Paleoproterozoic Huronian interglacial sediments and the rise of atmospheric oxygen. Earth Planet Sci. 255:188–212.10.1016/j.epsl.2006.12.015Search in Google Scholar

Pasquini L, Bonifacio P, Randich S, Galli D, Gratton R.G. 2004. Beryllium in turnoff stars of NGC 6397: Early Galaxy spallation, cosmochronology and cluster formation,A&A, 426, 2, 651-65710.1051/0004-6361:20041254Search in Google Scholar

Pavlo B, Betenbaugh J, Bouwer EJ. 2014. The effects of alternative pretreatment strategies on anaerobic digestion and methane production from different algal strains. Bioresour Technol. 155:366–372.10.1016/j.biortech.2013.12.095Search in Google Scholar PubMed

Pflug HD. 1978. Yeast-like microfossils detected in oldest sediments of the earth. Journal Naturwissenschaften. 65:121–134.10.1007/BF00401904Search in Google Scholar

Pflug HD. 1984. Microvesicles in meteorites, a model of pre-biotic evolution. Journal Naturwissenschaften. 71:531–533.10.1007/BF00455642Search in Google Scholar

Poch O, Kaci S, Stalport F, Szopa C, Coll P. 2014. Laboratory insights into the chemical and kinetic evolution of several organic molecules under simulated Mars surface UV radiation conditions. Icarus. 242:50–63.10.1016/j.icarus.2014.07.014Search in Google Scholar

Pointing SB, Belnap J. 2012. Microbial colonization and controls in dryland systems. Nat Rev Microbiol. 10:551–562.10.1038/nrmicro2831Search in Google Scholar

Polymenakou PP. 2012. Atmosphere: A Source of Pathogenic or Beneficial Microbes? Atmosphere. 3(1):87–102.10.3390/atmos3010087Search in Google Scholar

Poulet F, Bibring J-P, Mustard JF, Gendrin A, Mangold N, Langevin Y, et al. 2005. Phyllosilicates on Mars and implications for early Mars climate. Nature. 438:623–627.10.1038/nature04274Search in Google Scholar

Rabb H. 2018. Life on Mars. Astrobiology Society, SoCIA, April 14, 2018. University of Nevada, Reno (USA).Search in Google Scholar

Rahmati A, Larson DE, Cravens TE, et al. 2015. MAVEN insights into oxygen pickup ions at Mars. Geophys Res Lett. 42:8870–8876.10.1002/2015GL065262Search in Google Scholar

Rampe EB, Blake DF, Bristow TF, Ming DW, Vaniman DT, Morris RV, et al. 2020. Mineralogy and geochemistry of sedimentary rocks and eolian sediments in Gale crater, Mars: A review after six Earth years of exploration with Curiosity. Geochem. 80(2):125605.10.1016/j.chemer.2020.125605Search in Google Scholar

Ramirez RM, Craddock RA. 2018. The geological and climatological case for a warmer and wetter early mars. Nat Geosci. 11(4):230–237.10.1038/s41561-018-0093-9Search in Google Scholar

Ramirez RM, Kopparapu R, Zugger ME, Robinson TD, Freedman R, Kasting JF. 2014. Warming early Mars with CO2 and H2. Nat Geosci. 7:59–63.10.1038/ngeo2000Search in Google Scholar

Randel WJ, Russell JM, Rochie A, Waters JW. 1998. Seasonal Cycles and QBO Variations in Stratospheric CH4 and H2O Observed in UARS HALOE Data. J Atmos Sci. 55:163–185.10.1175/1520-0469(1998)055<0163:SCAQVI>2.0.CO;2Search in Google Scholar

Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR. 2008. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature. 455:1101–1109.10.1038/nature07381Search in Google Scholar PubMed

Rennó NO, Bos BJ, Catling D, Clark BC, Drube L, Fisher D, et al. 2009. Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site. J Geophys Res. 114(E1):0003.10.1029/2009JE003362Search in Google Scholar

Richardson MI, Mischna MA. 2005. Long-term evolution of transient liquid water on Mars. J Geophys Res. 110(E3):E03003.10.1029/2004JE002367Search in Google Scholar

Richter SL, Johnson AH, Dranoff MM, LePage BA, Williams CJ. 2008. Oxygen isotope ratios in fossil wood cellulose: Isotopic composition of Eocene- to Holocene-aged cellulose. Geochim Cosmochim Acta. 72:2744–2753.10.1016/j.gca.2008.01.031Search in Google Scholar

Rizzo V. 2020. Why should geological criteria used on Earthnot be valid also for Mars? Evidence of possiblemicrobialites and algae in extinct Martian lakeslakes. Int J Astrobiol. 19(3):283–294.10.1017/S1473550420000026Search in Google Scholar

Rizzo V, Cantasano N. 2009. Possible organosedimentary structures on Mars. Int J Astrobiol. 8(4):267–280.10.1017/S1473550409990152Search in Google Scholar

Rizzo V, Cantasano N. 2017. Structural parallels between terrestrial microbialites and Martian sediments: are all cases of ‘Pareidolia’? Int J Astrobiol. 16(4):297–316.10.1017/S1473550416000355Search in Google Scholar

Robbins SJ, Hynek BM. 2012. A new global database of Mars impact craters ≥ 1 km: 1. Database creation, properties, and parameters. J Geophys Res. 117:E05004.Search in Google Scholar

Roberts JH, Lillis RJ, Manga M. 2009. Giant impacts on early Mars and the cessation of the Martian dynamo. J Geophys Res -Planets. 114(E4):E04009.10.1029/2008JE003287Search in Google Scholar

Rode OD, Ivanov AV, Nazarov MA, Cimbalnikova A, Jurek K, Hejl V. 1979. Atlas of Photomicrographs of the Surface Structures of Lunar Regolith Particles. Boston: D. Reidel Publishing Co.10.1007/978-94-009-9359-4Search in Google Scholar

Rodríguez JAP, Gulick VC, Baker VR, Platz T, Fairén AG, Miyamoto H, et al. 2014. Evidence for Middle Amazonian catastrophic flooding and glaciation on Mars. Icarus. 242:202–210.10.1016/j.icarus.2014.06.008Search in Google Scholar

Rohatschek H. 1996. Levitation of stratospheric and mesospheric aerosols by gravito-photophoresis. J Aerosol Sci. 27:467–475.10.1016/0021-8502(95)00556-0Search in Google Scholar

Romanek CS, Perry EC, Treiman AH, Socki RA, Jones JH, Gibson EK Jr. 1998. Oxygen isotopic record of silicate alteration in the SNC meteorite Lafayette. Meteorit Planet Sci. 33:775–784.10.1111/j.1945-5100.1998.tb01683.xSearch in Google Scholar

Rosing MT. 1999. C-13-depleted carbon microparticles in > 3700-Ma sea-floor sedimentary rocks from west Greenland. Science. 283:674–676.10.1126/science.283.5402.674Search in Google Scholar

Rosing MT, Frei R. 2004. U-rich Archaean sea-floor sediments from Greenland - indications of > 3700 Ma oxygenic photosynthesis. Earth Planet Sci Lett. 217:237–244.10.1016/S0012-821X(03)00609-5Search in Google Scholar

Roy R, Conrad R. 1999. Effect of methanogenic precursors (acetate, hydrogen, propionate) on the suppression of methane production by nitrate in anoxic ricefield soil. FEMS Microbiol Ecol. 28:49–61.10.1111/j.1574-6941.1999.tb00560.xSearch in Google Scholar

Rozanov AY. 2009. Review of exobiological research. Space Biol Med. 5:85–125.Search in Google Scholar

Ruff SW, Niles PB, Alfano F, Clarke AB. 2014. Evidence for a Noachian-aged ephemeral lake in Gusev crater, Mars. Geology. 42(4):359–362.10.1130/G35508.1Search in Google Scholar

Ruff SW, Farmer JD. 2016. Silica deposits on Mars with features resemblinghot spring biosignatures at El Tatio in Chile. Nat Commun. 7:13554.10.1038/ncomms13554Search in Google Scholar PubMed PubMed Central

Sagan C, Morowitz H. 1967. Life in the clouds of Venus. Nature. 215:1259–1260.10.1038/2151259a0Search in Google Scholar

Sallstedt T, Bengtson S, Broman C, Crill PM, Canfield DE. 2018. Evidence of oxygenic phototrophy in ancient phosphatic stromatolites from the Paleoproterozoic Vindhyan and Aravalli Supergroups, India. Geobiology. 16(2):139–159.10.1111/gbi.12274Search in Google Scholar PubMed

Sanchez FJ, Mateo-Martí E, Raggio J, Meeßen J, Martínez-Frías J, Sancho LG, et al. 2012. The resistance of the lichen Circinaria gyrosa (nom. provis.) towards simulated Mars conditions-a model test for the survival capacity of an eukaryotic extremophile. Planet Space Sci. 72(1):102–110.10.1016/j.pss.2012.08.005Search in Google Scholar

Sanchez-Baracaldo P, Cardona T. 2020. On the origin of oxygenic photosynthesis and Cyanobacteria. New Phytol. 225(4):1440–1446.Search in Google Scholar

Satterfield CL, Lowenstein TK, Vreeland RH, Rosenzweig WD, Powers DW. 2005. New evidence for 250 Ma age of halotolerant bacterium from a Permian salt crystal. Geology. 33:265–268.10.1130/G21106.1Search in Google Scholar

Sattler B, Puxbaum H, Psenner R. 2001. Bacterial growth in super-cooled cloud droplets. Geophys Res Lett. 28:239–242.10.1029/2000GL011684Search in Google Scholar

Schaber GG, Kirk L, Strom RG. 1992. Geology and distribution of impact craters on Venus: what are they telling us? J Geophys Res - Planets. 97(E8):13257–13301.10.1029/92JE01246Search in Google Scholar

Schidlowski MA. 1988. 3800-million-year isotopic record of life from carbon in sedimentary rocks. Nature. 333:313–335.10.1038/333313a0Search in Google Scholar

Schidlowski MA. 2001. Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambr Res. 106:117–134.Search in Google Scholar

Schindler DW. 1974. Eutrophication and recover in experimental lakes: implications for lake management. Science. 184:897–899.10.1126/science.184.4139.897Search in Google Scholar

Schoenberg R, Kamber BS, Collerson KD, Moorbath S. 2002. Tungsten isotope evidence from approximately 3.8-Gyr metamorphosed sediments for early meteorite bombardment of the Earth. Nature. 418:403–405.Search in Google Scholar

Schroder K-P, Smith RC. 2008. Distant future of the Sun and Earth revisited. Mon Not R Astron Soc. 386:155–163.10.1111/j.1365-2966.2008.13022.xSearch in Google Scholar

Schulze-Makuch D, Grinspoon DH, Abbas O, Irwin LN, Bullock MA. 2004. A sulfur-based survival strategy for putative phototrophic life in the Venusian atmosphere. Astrobiol. 4:11–18.10.1089/153110704773600203Search in Google Scholar

Schulze-Makuch D, Irwin LN, Lips JH, LeMone D, Dohm JM, Farien AG. 2005. Scenarios for the evolution of life on Mars. J Geophys Res - Planets. 110(E12).10.1029/2005JE002430Search in Google Scholar

Scranton MI, Brewer PG. 1977. Occurrence of methane in the near-surface waters of the western subtropical North-Atlantic. Deep Sea Res. 24:127–138.10.1016/0146-6291(77)90548-3Search in Google Scholar

Scranton MI., Farrington JW. 1977. Methane production in the waters off Walvis Bay, J Geophys Res. 82:4947–4953.Search in Google Scholar

Sears DW, Kral TA. 1998. Martian “microfossils” in lunar meteorites? Meteorit Planet Sci. 33(4):791–794.10.1111/j.1945-5100.1998.tb01685.xSearch in Google Scholar PubMed

Seckbach J, Libby WF. 1970. Vegetative life on Venus? Or investigations with algae which grow under pure CO2 in hot acid media at elevated pressures. Space Life Sci. 2:121–143.10.1007/BF01101279Search in Google Scholar PubMed

Seckbach J, Baker FA, Shugarman PM. 1970. Algae thrive under pure CO2. Nature. 227:744–745.10.1038/227744a0Search in Google Scholar PubMed

Selbman, L, Zucconi L, Isola D, Onofri S. 2015. Rock black fungi: excellence in the extremes. From the Antarctic to Space. Curr Genet. 61:335–345.Search in Google Scholar

Setlow P. 2006. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol. 101:514–525.10.1111/j.1365-2672.2005.02736.xSearch in Google Scholar PubMed

Setlow B, Setlow P. 1995. Small, acid-soluble proteins bound to DNA protect Bacillus subtilis spores from killing by dry heat. Appl Environ Microbiol. 61:2787–2790.10.1128/aem.61.7.2787-2790.1995Search in Google Scholar PubMed PubMed Central

Shaheen R, Niles PB, Chong K, Corrigan CM, Thiemens MH. 2015. Carbonate formation events in ALH 84001 trace the evolution of the Martian atmosphere. PNAS. 112(2):336–341.Search in Google Scholar

Schiebel R, Brupbacher U, Schmidtko S, Nausch G, Waniek JJ, Thierstein HR. 2011. Spring coccolithophore production and dispersion in the temperate eastern North Atlantic Ocean. J Geophys Res Oceans. 116:C08030.10.1029/2010JC006841Search in Google Scholar

Schuerger AC, Moores JE, Clausen CA, Barlow NG, Britt DT. 2012. Methane from UV irradiated carbonaceous chondrites under simulated Martian conditions. J Geophys Res. 117:E08007.10.1029/2011JE004023Search in Google Scholar

Sharov AA. 2010. Genetic Gradualism and the ExtraTerrestrial Origin of Life. J Cosmol. 5:833–842.Search in Google Scholar

Siebach KL, Grotzinger JP. 2014. Volumetric estimates of ancient water on Mount Sharp based on boxwork deposits, Gale Crater, Mars. J Geophys Res - Planets. 119:189–198.10.1002/2013JE004508Search in Google Scholar

Sizemore HG, Mellon MT, Searls ML, Lemmon MT, Zent AP, Heet TL, et al. 2010. In situ analysis of ice table depth variations in the vicinity of small rocks at the Phoenix landing site. J Geophys Res. 115:E00E09.10.1029/2009JE003414Search in Google Scholar

Smerdon JE, Pollack HN, Cermak V, Enz JW, Kresl K, Safanda J, et al. 2004. J Geophys Res. 109:44–54.Search in Google Scholar

Smith MD. 2004. Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus. 167:148–165.10.1016/j.icarus.2003.09.010Search in Google Scholar

Small LW. 2015. On Debris Flows and Mineral Veins - Where surface life resides on Mars. https://www.scribd.com/doc/284247475/On-Debris-Flows-eBook.Search in Google Scholar

Soffen GA. 1965. NASA Technical Report, N65-23980.Search in Google Scholar

Squyres SW, Knoll AH. 2005. Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars. Earth Planet Sci Lett. 240:1–10.10.1016/j.epsl.2005.09.038Search in Google Scholar

Squyres SW., Grotzinger JP, Arvidson RE, Bell III JF, Calvin W, Christensen PR, et al. 2004. In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars. Science. 306(5702):1709–1714.Search in Google Scholar

Squyres SW. Knoll AH, Arvidson RE, Clark BC, Grotzinger JP, Jolliff BL, et al. 2006. Two years at Meridiani Planum: Results from the Opportunity rover. Science. 313:1403–1407.10.1126/science.1130890Search in Google Scholar PubMed

Squyres SW, Arvidson RE, Bollen D, Bell III JF, Brückner J, Cabrol NA, et al. 2006. Overview of the Opportunity Mars Exploration Rover mission to Meridiani Planum: Eagle Crater to Purgatory Ripple. J Geophys Res. 111:E12S12.10.1029/2006JE002771Search in Google Scholar

Stephan AP, Naoz S, Gaudi BS, Salas JM. 2020. Eating Planets for Lunch and Dinner: Signatures of Planet Consumption by Evolving Stars. Astrophys J. 889(1):45.10.3847/1538-4357/ab5b00Search in Google Scholar

Steele A, McCubbin FM, Fries M. 2012. A Reduced Organic Carbon Component in Martian Basalts. Science. 337:212–215.10.1126/science.1220715Search in Google Scholar PubMed

Steele LJ, Balme MR, Lewis SR, Spiga A. 2017. The water cycle and regolith-atmosphere interaction at Gale crater, Mars. Icarus. 289:56–79.10.1016/j.icarus.2017.02.010Search in Google Scholar

Stern JC, Sutter B, Freissinet C, Navarro-González R, McKay CP, Archer PD, et al. 2015. Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale Crater, Mars. Proc Natl Acad Sci USA. 112:4245–4250.10.1073/pnas.1420932112Search in Google Scholar PubMed PubMed Central

Stetter KO. 2006. Hyperthermophiles in the history of life. Philos Trans R Soc Lond B Biol Sci. 361(1474):1837–1843.Search in Google Scholar

Surkov YA, Moskalyeva LP, Shcheglov OP, Kharyukova VP, Manvelyan OS, Kirichenko VS, et al. 1983. Determination of the elemental composition of rocks on Venus by Venera 13 and Venera 14 (preliminary results). Proc. Lunar Planet. Sci. Conf. 13th, Part 2, J Geophys Res. 88(S02):A481–A493.Search in Google Scholar

Sutter B, McAdam AC, Mahaffy PR, Ming DW, Edgett KS, Rampe EB, et al. 2017. Evolved gas analyses of sedimentary rocks and eolian sediment in Gale Crater, Mars: results of the Curiosity rover’s sample analysis at Mars instrument from Yellowknife Bay to the Namib Dune. J Geophys Res - Planets. 122(12):2574–2609.Search in Google Scholar

Szopa C, Freissinet C, Glavin DP, Millan M, Buch A, Franz HB, et al. 2020. First Detections of Dichlorobenzene Isomers and Trichloromethylpropane from Organic Matter Indigenous to Mars Mudstone in Gale Crater, Mars: Results from the Sample Analysis at Mars Instrument Onboard the Curiosity Rover. Astrobiol. 20:292–306.10.1089/ast.2018.1908Search in Google Scholar PubMed

Sunde EP, Setlow P, Hederstedt L, Halle B. 2009. The physical state of water in bacterial spores. PNAS. 106:19334–19339.10.1073/pnas.0908712106Search in Google Scholar PubMed PubMed Central

Sylvia DM., Fuhrmann JJ, Hartel PG, Zuberer DA. 2004. Principles and Applications of Soil Microbiology. Prentice Hall, 672 p.Search in Google Scholar

Szewczyk NJ, Mancinelli RL, McLamb W, Reed D, Blumberg BS, Conley CA. 2005. Caenorhabditis elegans survives atmospheric breakup of STS-107, Space Shuttle Columbia. Astrobiol. 5:690–705.10.1089/ast.2005.5.690Search in Google Scholar PubMed

Tagle R. 2008. LL ordinary chondrite on the Moon: Results from the 3.9 Ga impact melt at the landing site from Apollo 17. 36th Lunar and Planetary Science Conference, abstract 2008.Search in Google Scholar

Tashiro T, Ishida A, Hori M, Igisu M, Koike M, Méjean P, et al. 2017. Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada. Nature. 549(7673):516–518.Search in Google Scholar

Ten Veldhuis M, Ananyev G, Dismukes GC. 2020. Symbiosis extended: exchange of photosynthetic O2 and fungal-respired CO2 mutually power metabolism of lichen symbionts. Photo-synth Res. 143:287–299.10.1007/s11120-019-00702-0Search in Google Scholar PubMed PubMed Central

Terada K, Morota T, Kato, M, 2020. Asteroid shower on the Earth-Moon system immediately before the Cryogenian period revealed by KAGUYA. Nat Commun11, 3453. https://doi.org/10.1038/s41467-020-17115-6.10.1038/s41467-020-17115-6Search in Google Scholar PubMed PubMed Central

Thomas-Keprta KL, Clemett SJ, McKay DS, Gibson EK, Wentworth SJ. 2009. Origins of magnetite nanocrystals in Martian meteorite ALH84001. Geochim Cosmochim Acta. 73:6631–6677.10.1016/j.gca.2009.05.064Search in Google Scholar

Todd Clancy R, Smith MD, Lefèvre F, McConnochie TH, Sandor BJ, Wolff MJ, et al. 2017. Vertical profiles of Mars 1.27 μm O2 day-glow from MRO CRISM limb spectra: Seasonal/global behaviors, comparisons to LMD-GCM simulations, and a global definition for Mars water vapor profiles. Icarus. 293:132–156.Search in Google Scholar

Trainer MG, Wong MH, McConnochie TH, Franz HB, Atreya SK, Conrad PG, et al. 2019. Seasonal Variations in Atmospheric Composition as Measured in Gale Crater, Mars. J Geophys Res -Planets. 124:3000–3024.10.1029/2019JE006175Search in Google Scholar

Treiman AH, Dyar MD, McCanta M, Pieters CM, Hiroi T, Lane MD, et al. 2007. Martian dunite NWA 2737: Petrographic constraints geological history, shock events, and olivine color. J Geophys Res. 112:E04002.10.1029/2006JE002777Search in Google Scholar

Treiman AH. 2003. The Nakhla martian meteorite is a cumulate igneous rock: Comment on Varela et al. (2001). Mineral Petrol. 77:271–277.10.1007/s007100300000Search in Google Scholar

Treiman AH, Essen EJ. 2011. Chemical composition of magnetite in Martian meteorite ALH 84001: Revised appraisal from thermo-chemistry of phases in Fe-Mg-C-O. Geochim Cosmochim Acta. 75:5324–5335.10.1016/j.gca.2011.06.038Search in Google Scholar

Updegraff K, Pastor J, Bridgham SD, Johnston CA. 1995. Environmental and substrate controls over carbon and nitrogen mineralization in northern wetlands. Ecol Appl. 5:151–163.10.2307/1942060Search in Google Scholar

Urata RA, Toon OB. 2013. Simulations of the martian hydrologic cycle with a general circulation model: Implications for the ancient martian climate. Icarus. 226(1):229–250.Search in Google Scholar

Urey HC. 1962. Life-forms in meteorites: Origin of life-like forms in carbonaceous chondrites introduction. Nature. 193:1119–1123.10.1038/1931119a0Search in Google Scholar

Urey HC. 1966. A review of evidence for biological material in meteorites. Life Sci Space Res. 4:35–59.Search in Google Scholar

U.S. Department of Agriculture. 2017. Complete Guide to Biogas and Methane: Agricultural Recovery, Manure Digesters, AgSTAR, Landfill Methane, Greenhouse Gas Emission Reduction and Global Methane Initiative. U.S. Government Printing Office, WDC.Search in Google Scholar

U.S. Department of Energy. 2017. Complete Guide to Methane Hydrate Energy: Ice that Burns, Natural Gas Production Potential, Effect on Climate Change, Safety, and the Environment. U.S. Government Printing Office, WDC.Search in Google Scholar

Vago JL, Westall F, Pasteur Instrument Teams, Landing Site Selection Working Group, and Other Contributors. 2017. Habitability on Early Mars and the Search for Biosignatures with the Exo-Mars Rover. Astrobiol. 17(6–7):471–510.Search in Google Scholar

Valeille A, Combi MR, Tenishev V, Bougher SW, Nagy AF. 2010. A study of suprathermal oxygen atoms in Mars upper thermo-sphere and exosphere over the range of limiting conditions. Icarus. 206:18–27.10.1016/j.icarus.2008.08.018Search in Google Scholar

Valtonen, M, Nurmi P, Zheng J-Q, Cucinotta FA, Wilson JW, Horneck G, et al. 2008. Natural transfer of viable microbes in space from planets in extra-solar systems to a planet in our solar system and vice versa. Astrophys J. 690(1):210–215.Search in Google Scholar

Van Den Bergh S. 1989. Life and Death in the Inner Solar System. Publ Astron Soc Pac. 101:500–509.10.1086/132459Search in Google Scholar

Van Eaton AR, Harper MA, Wilson CJN. 2013. Highflying diatoms: widespread dispersal of microorganisms in an explosive volcanic eruption. Geology. 41(11):1187–1190.10.1130/G34829.1Search in Google Scholar

Vaniman DT, Bish DL, Ming DW, Bristow TF, Morris RV, Blake DF, et al. 2014. Mineralogy of a mudstone at Yellowknife Bay, Gale Crater, Mars. Science. 343(6169):1243480.Search in Google Scholar

Viennet J-C, Bernard S, Le Guillou C, Jacquemot P, Balan E, Delbes L, et al. 2019. Experimental clues for detecting biosignatures on Mars. Geochem Perspect Lett. 12:28–33.Search in Google Scholar

Vreeland RN, Rosenzweig WD, Powers DW. 2000. Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature. 407:897–900.10.1038/35038060Search in Google Scholar

Wadhwa M, Lugmair GW. 1996. The formation age of carbonates in ALH 84001 (abstract). Meteoritics. 31:A145.Search in Google Scholar

Wainwright M, Fawaz Alshammari F, Alabri K. 2010. Are microbes currently arriving to Earth from space? J Cosmol. 7:1692–1702.Search in Google Scholar

Wall SD. 1981. Analysis of condensates formed at the Viking 2 lander site—The first winter. Icarus. 47:173–183.10.1016/0019-1035(81)90165-2Search in Google Scholar

Wang A, Haskin LA, Squyres SW, Jolliff BL, Crumpler L, Gellert R, et al. 2006. Sulfate deposition in subsurface regolith in Gusev Crater, Mars. J Geophys Res. 11(E2): E02S17.Search in Google Scholar

Wang S, Hu S. 2020. Hydrogen Isotopic Variations in the Shergottites. Geosci. 10(4):148.10.3390/geosciences10040148Search in Google Scholar

Way MJ, Del Genio AD, Kiang NY, Sohl LE, Grinspoon DH, Aleinov I, et al. 2016. Was Venus the first habitable world of our solar system? Geophys Res Lett. 43:8376–8383.Search in Google Scholar

Way MJ, Del Genio AD. 2019. A view to the possible habitability of ancient Venus over three billion years. EPSC Abstracts. 13:EPSC-DPS2019-1846-1.Search in Google Scholar

Weirzchos J. 2012. Microorganisms in desert rocks: the edge of life on Earth. Int Microbiol. 15:171–181.Search in Google Scholar

West WE, Coloso JJ, Jones SE. 2012. Effects of algal and terrestrial carbon on methane production rates and methanogen community structure in a temperate lake sediment. Freshw Biol. 57(5):949–955.10.1111/j.1365-2427.2012.02755.xSearch in Google Scholar

Westall F, Foucher F, Bost N, Bertrand M, Damien Loizeau D, Vago JL, et al. 2015. Biosignatures on Mars: What, Where, and How? Implications for the Search for Martian Life. Astrobiol. 15(11):998–1029.10.1089/ast.2015.1374Search in Google Scholar PubMed PubMed Central

Westall F, Boni L, Guerzoni E. 1995. The experimental silicification of microorganisms. Palaeontol. 38(3):495–528.Search in Google Scholar

White O, Eisen JA, Heidelberg JF, Hickey EK, Peterson JD, Dodson RJ, et al. 1999. Genome Sequence of the Radioresistant Bacterium Deinococcus radiodurans R1. Science. 286:1571–1577.10.1126/science.286.5444.1571Search in Google Scholar PubMed PubMed Central

Whiteway JA, Komguem L, Dickinson C, Cook C, Illnicki M, Seabrook J, et al. 2009., Mars water-ice clouds and precipitation. Science. 325(5936):68–70.Search in Google Scholar

Williams RME, Grotzinger JP, Dietrich WE, Gupta S, Sumner DY, Wiens RC, et al. 2013. Martian Fluvial Conglomerates at Gale Crater. Science. 340:1068–1072.10.1126/science.1237317Search in Google Scholar PubMed

Willis MJ, Ahrens TJ, Bertani LE, Nash CZ. 2006. Bugbuster—survivability of living bacteria upon shock compression. Earth Planet Sci Lett. 247:185–196.10.1016/j.epsl.2006.03.054Search in Google Scholar

Wolf ET, Toon OB. 2015. The evolution of habitable climates under the brightening Sun. J Geophys Res - Atmospheres. 120:5775–5794.10.1002/2015JD023302Search in Google Scholar

Wolf ET, Shields AL, Kopparapu RK, Haqq-Misra J, Toon OB. 2017. Constraints on climate and habitability for Earth-like exoplanets determined from a general circulation model. Astrophys J. 837(2):107.Search in Google Scholar

Wordsworth R, Forget F, Millour E, Head JW, Madeleine JB, Charnay B. 2013. Global modelling of the early martian climate under a denser CO 2 atmosphere: Water cycle and ice evolution. Icarus. 222(1):1–19.Search in Google Scholar

Worth RJ, Sigurdsson S, House CH. 2013. Seeding Life on the Moons of the Outer Planets via Lithopanspermia. Astrobiol. 13(12):1155–1165.10.1089/ast.2013.1028Search in Google Scholar

Xiao SH, Muscente AD, Chen L, Zhou CM, Schiffbauer JD, Wood AD, et al. 2014. The Weng’an biota and the Ediacaran radiation of multicellular eukaryotes. Nat Sci Rev. 1:498–520.10.1093/nsr/nwu061Search in Google Scholar

Yen AS, Ming DW, Vaniman DT, Gellert R, Blake DF, Morris RV, et al. 2017. Multiple stages of aqueous alteration along fractures in mudstone and sandstone strata in Gale crater, Mars. Earth Planet Sci Lett. 471:186–198.10.1016/j.epsl.2017.04.033Search in Google Scholar

Yockey HP. 1977. A calculation of the probability of spontaneous biogenesis by information theory. J Theor Biol. 67:377–398.10.1016/0022-5193(77)90044-3Search in Google Scholar

Zahnle KJ, Catling DC, Claire MW. 2013. The rise of oxygen and the hydrogen hourglass. Chem Geol. 362:26–34.10.1016/j.chemgeo.2013.08.004Search in Google Scholar

Zappalà V, Cellino A, Gladman BJ, Manley S, Migliorini F. 1998. Asteroid showers on Earth after family break-up events. Icarus. 134(1):176–179.Search in Google Scholar

Zhang Z-F. et al. 2014. An early Cambrian agglutinated tubular lophophorate with brachiopod characters, Scientific Reports, 4:4682, doi: 10.1038/srep04682.10.1038/srep04682Search in Google Scholar PubMed PubMed Central

Zhdanova NN, Tugay T, Dighton J, Zheltonozhsky V, McDermott P. 2004. Ionizing radiation attracts soil fungi. Mycol Res. 108:1089–1096.10.1017/S0953756204000966Search in Google Scholar

Zhou C, Brasier MD, Xue Y. 2001. Three-dimensional phosphatic preservation of giant acritarchs from the Terminal Proterozoic Doushantuo Formation in Guizhou and Hubei Provinces, South China. Palaeontol. 44:1157–1178.10.1111/1475-4983.00219Search in Google Scholar

Zhmur SI, Gerasimenko LM. 1999. Biomorphic forms in carbonaceous meteorite Alliende and possible ecological system -producer of organic matter hondrites. In: Hoover RB. Editor. Instruments, Methods and Missions for Astrobiology II, Proc SPIE. 3755:48–58.Search in Google Scholar

Zhmur SI, Rozanov AY, Gorlenko VM. 1997. Lithified remnants of microorganisms in carbonaceous chondrites. Geochem Int. 35:58–60.Search in Google Scholar

Received: 2020-07-08
Accepted: 2020-08-25
Published Online: 2020-10-17

© 2020 Rhawn G. Joseph et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 18.4.2024 from https://www.degruyter.com/document/doi/10.1515/astro-2020-0019/html
Scroll to top button