Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dirac-vortex topological cavities

Abstract

Cavity design is crucial for single-mode semiconductor lasers such as the ubiquitous distributed feedback and vertical-cavity surface-emitting lasers. By recognizing that both of these optical resonators feature a single mid-gap mode localized at a topological defect in the one-dimensional lattice, we upgrade this topological cavity design concept into two dimensions using a honeycomb photonic crystal with a vortex Dirac gap by applying the generalized Kekulé modulations. We theoretically predict and experimentally show on a silicon-on-insulator platform that the Dirac-vortex cavities have scalable mode areas, arbitrary mode degeneracies, vector-beam vertical emission and compatibility with high-index substrates. Moreover, we demonstrate the unprecedentedly large free spectral range, which defies the universal inverse relation between resonance spacing and resonator size. We believe that our topological micro-resonator will be especially useful in applications where single-mode behaviour is required over a large area, such as the photonic-crystal surface-emitting laser.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of the Dirac-vortex cavity and the three types of commercialized semiconductor laser cavities for single-mode operation.
Fig. 2: Design of the photonic-crystal Dirac-vortex cavity in an air-clad silicon membrane (0.46a thick, n = 3.4) by three-dimensional (3D) simulations for the TE-like modes.
Fig. 3: Cavity properties as a function of the vortex size studied using 2D calculations with the effective refractive index 2.6.
Fig. 4: Cavity Q as a function of substrate index (nsub) studied by 3D finite-difference-time-domain method for two configurations.
Fig. 5: Experimental studies of silica-cladded Dirac-vortex cavities with α = 4, m0 = 50 nm and a = 490 nm.

Similar content being viewed by others

Data availability

All relevant data are available from the authors on reasonable request.

References

  1. Chuang, S. L. Physics of Photonic Devices (John Wiley and Sons, 2009).

  2. Kogelnik, H. & Shank, C. Stimulated emission in a periodic structure. Appl. Phys. Lett. 18, 152–154 (1971).

    CAS  Google Scholar 

  3. Haus, H. & Shank, C. Antisymmetric taper of distributed feedback lasers. IEEE J. Quantum Electron. 12, 532–539 (1976).

    Google Scholar 

  4. Sekartedjo, K. et al. 1.5 μm phase-shifted dfb lasers for single-mode operation. Electron. Lett. 20, 80–81 (1984).

    CAS  Google Scholar 

  5. Wang, S. & Sheem, S. Two-dimensional distributed-feedback lasers and their applications. Appl. Phys. Lett. 22, 460–462 (1973).

    CAS  Google Scholar 

  6. Imada, M. et al. Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure. Appl. Phys. Lett. 75, 316–318 (1999).

    CAS  Google Scholar 

  7. Photonic crystal surface emitting laser diode L13395-04. Hamamatsu Photonics https://www.hamamatsu.com/jp/en/product/lasers/semiconductor-lasers/pcsels/ (2018).

  8. Hirose, K. et al. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat. Photon. 8, 406–411 (2014).

    Google Scholar 

  9. Yoshida, M. et al. Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams. Nat. Mater. 18, 121–128 (2019).

    CAS  Google Scholar 

  10. Shockley, W. On the surface states associated with a periodic potential. Phys. Rev. 56, 317–323 (1939).

    CAS  Google Scholar 

  11. Jackiw, R. & Rebbi, C. Solitons with fermion number 1/2. Phys. Rev. D 13, 3398–3409 (1976).

    CAS  Google Scholar 

  12. Su, W., Schrieffer, J. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).

    CAS  Google Scholar 

  13. Jackiw, R. & Rossi, P. Zero modes of the vortex-fermion system. Nucl. Phys. B 190, 681–691 (1981).

    Google Scholar 

  14. Hou, C.-Y., Chamon, C. & Mudry, C. Electron fractionalization in two-dimensional graphenelike structures. Phys. Rev. Lett. 98, 186809 (2007).

    Google Scholar 

  15. Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).

    CAS  Google Scholar 

  16. Khanikaev, A. B. & Shvets, G. Two-dimensional topological photonics. Nat. Photon. 11, 763–773 (2017).

    CAS  Google Scholar 

  17. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    CAS  Google Scholar 

  18. Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017).

    CAS  Google Scholar 

  19. Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).

    Google Scholar 

  20. Zeng, Y. et al. Electrically pumped topological laser with valley edge modes. Nature 578, 246–250 (2020).

    CAS  Google Scholar 

  21. Shao, Z.-K. et al. A high-performance topological bulk laser based on band-inversion-induced reflection. Nat. Nanotechnol. 15, 67–72 (2020).

    CAS  Google Scholar 

  22. Noh, J. et al. Topological protection of photonic mid-gap defect modes. Nat. Photon. 12, 408–415 (2018).

    Google Scholar 

  23. Ota, Y. et al. Photonic crystal nanocavity based on a topological corner state. Optica 6, 786–789 (2019).

    CAS  Google Scholar 

  24. Mittal, S. et al. Photonic quadrupole topological phases. Nat. Photon. 13, 692–696 (2019).

    CAS  Google Scholar 

  25. Zhang, W. et al. Low-threshold topological nanolasers based on second-order corner state. Light Sci. Appl. 9, 109 (2020).

    CAS  Google Scholar 

  26. Chua, S.-L., Lu, L., Bravo-Abad, J., Joannopoulos, J. D. & Soljačić, M. Larger-area single-mode photonic crystal surface-emitting lasers enabled by an accidental Dirac point. Opt. Lett. 39, 2072–2075 (2014).

    CAS  Google Scholar 

  27. Bravo-Abad, J., Joannopoulos, J. D. & Soljačić, M. Enabling single-mode behavior over large areas with photonic Dirac cones. Proc. Natl Acad. Sci. USA 109, 9761–9765 (2012).

    CAS  Google Scholar 

  28. Lu, L., Gao, H. & Wang, Z. Topological one-way fiber of second Chern number. Nat. Commun. 9, 5384 (2018).

    CAS  Google Scholar 

  29. Teo, J. C. & Kane, C. L. Topological defects and gapless modes in insulators and superconductors. Phys. Rev. B 82, 115120 (2010).

    Google Scholar 

  30. Iadecola, T., Schuster, T. & Chamon, C. Non-Abelian braiding of light. Phys. Rev. Lett. 117, 073901 (2016).

    Google Scholar 

  31. Menssen, A. J., Guan, J., Felce, D., Booth, M. J. & Walmsley, I. A. A photonic Majorana bound state. Phys. Rev. Lett. 125, 117401 (2020) (2019).

  32. Noh, J. et al. Braiding photonic topological zero modes. Preprint at http://arXiv.org/abs/1907.03208 (2019).

  33. Gao, P. et al. Majorana-like zero modes in Kekulé distorted sonic lattices. Phys. Rev. Lett. 123, 196601 (2019).

    CAS  Google Scholar 

  34. Chen, C.-W. et al. Mechanical analogue of a Majorana bound state. Adv. Mater. 31, 1904386 (2019).

    CAS  Google Scholar 

  35. Barik, S., Miyake, H., DeGottardi, W., Waks, E. & Hafezi, M. Two-dimensionally confined topological edge states in photonic crystals. New J. Phys. 18, 113013 (2016).

    Google Scholar 

  36. Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018).

    CAS  Google Scholar 

  37. Wu, L.-H. & Hu, X. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114, 223901 (2015).

    Google Scholar 

  38. Miyai, E. et al. Lasers producing tailored beams. Nature 441, 946 (2006).

    CAS  Google Scholar 

  39. Lu, L. et al. Gain compression and thermal analysis of a sapphire-bonded photonic crystal microcavity laser. IEEE Photon. Technol. Lett. 21, 1166–1168 (2009).

    CAS  Google Scholar 

  40. Matsubara, H. et al. GaN photonic-crystal surface-emitting laser at blue-violet wavelengths. Science 319, 445–447 (2008).

    CAS  Google Scholar 

  41. Taylor, R., Ivanov, P., Li, G., Childs, D. & Hogg, R. Optimisation of photonic crystal coupling through waveguide design. Opt. Quantum Electron. 49, 47 (2017).

    CAS  Google Scholar 

  42. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    Google Scholar 

  43. Shalaev, M. I., Walasik, W., Tsukernik, A., Xu, Y. & Litchinitser, N. M. Robust topologically protected transport in photonic crystals at telecommunication wavelengths. Nat. Nanotechnol. 14, 31–34 (2018).

    Google Scholar 

  44. He, X.-T. et al. A silicon-on-insulator slab for topological valley transport. Nat. Commun. 10, 872 (2019).

    Google Scholar 

  45. Ma, J., Xi, X. & Sun, X. Topological photonic integrated circuits based on valley kink states. Laser Photon. Rev. 13, 1900087 (2019).

    CAS  Google Scholar 

  46. Peng, S. et al. Probing the band structure of topological silicon photonic lattices in the visible spectrum. Phys. Rev. Lett. 122, 117401 (2019).

    CAS  Google Scholar 

  47. Liu, W. et al. Z2 photonic topological insulators in the visible wavelength range for robust nanoscale photonics. Nano Lett. 20, 1329–1335 (2020).

    CAS  Google Scholar 

  48. Arnaud, J. Degenerate optical cavities. Appl. Opt. 8, 189–196 (1969).

    CAS  Google Scholar 

  49. Colombelli, R. et al. Quantum cascade surface-emitting photonic crystal laser. Science 302, 1374–1377 (2003).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Gan, Y. Liang and G. Li for helpful discussions. L.L. acknowledges his PhD advisor J. D. O’Brien (1969–2017) for his teaching of photonic crystal lasers. L.L. was supported by the National Key R&D Program of China (2017YFA0303800, 2016YFA0302400), the Natural Science Foundation of China (11721404), the Strategic Priority Research Program of the the Chinese Academy of Sciences (XDB33000000) and the Beijing Natural Science Foundation (Z200008). F.B. was supported by NSFC under grant nos 11734009 and 11674181.

Author information

Authors and Affiliations

Authors

Contributions

L.L. conceived and led the project and wrote the paper. X.G. performed the simulations with help from H.L. and L.Z.; L.Y. performed device fabrication and characterization. Z.W. contributed to the analytical model. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Ling Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informatio Nature Nanotechnology thanks Yidong Chong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures S1–S12, Supplementary Table S1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Yang, L., Lin, H. et al. Dirac-vortex topological cavities. Nat. Nanotechnol. 15, 1012–1018 (2020). https://doi.org/10.1038/s41565-020-0773-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-020-0773-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing