Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Catalyst-controlled enantioselective 1,1-arylboration of unactivated olefins

Abstract

Enantioselective difunctionalization of alkenes constitutes an efficient strategy to assemble complex chiral molecules from simple racemic or achiral starting materials. Here we present an intermolecular nickel-catalysed enantioselective 1,1-arylboration of unactivated terminal alkenes. The high regio- and enantioselectivities of the reactions arise from a judicious choice of the nickel catalyst rather than the incorporation of a directing group. Moreover, excellent regioselectivities can also be obtained from the reactions of allylbenzenes. We also conducted a series of stereospecific downstream transformations for the enantioenriched secondary boronic esters. These examples represent an efficient catalyst-controlled enantioselective 1,1-difunctionalization of unactivated alkenes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Alkene difunctionalizations and synthesis of chiral secondary boron compounds.
Fig. 2: Reactions of gaseous olefins and mechanistic investigations.
Fig. 3

Similar content being viewed by others

Data availability

The findings of this study are available within the paper and its Supplementary Information. All data are available from the authors upon reasonable request.

References

  1. DeRosa, T. F. Advances in Synthetic Organic Chemistry and Methods Reported in US Patents 60–61 (Elsevier, 2006).

  2. Beller, M., Seayad, J., Tillack, A. & Jiao, H. Catalytic Markovnikov and anti-Markovnikov functionalization of alkenes and alkynes: recent developments and trends. Angew. Chem. Int. Ed. 43, 3368–3398 (2004).

    CAS  Google Scholar 

  3. Chemler, S. R. The enantioselective intramolecular aminative functionalization of unactivated alkenes, dienes, allenes and alkynes for the synthesis of chiral nitrogen heterocycles. Org. Biomol. Chem. 7, 3009–3019 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. McDonald, R. I., Liu, G. & Stahl, S. S. Palladium (ii)-catalyzed alkene functionalization via nucleopalladation: stereochemical pathways and enantioselective catalytic applications. Chem. Rev. 111, 2981–3019 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Yin, G., Mu, X. & Liu, G. Palladium (ii)-catalyzed oxidative difunctionalization of alkenes: bond forming at a high-valent palladium center. Acc. Chem. Res. 49, 2413–2423 (2016).

    CAS  PubMed  Google Scholar 

  6. Dhungana, R. K., Kc, S., Basnet, P. & Giri, R. Transition metal-catalyzed dicarbofunctionalization of unactivated olefins. Chem. Rec. 18, 1314–1340 (2018).

    CAS  PubMed  Google Scholar 

  7. Zhang, J.-S., Liu, L., Chen, T. & Han, L.-B. Transition-metal-catalyzed three-component difunctionalizations of alkenes. Chem. Asian J. 13, 2277–2291 (2018).

    CAS  PubMed  Google Scholar 

  8. Sauer, G. S. & Lin, S. An electrocatalytic approach to the radical difunctionalization of alkenes. ACS Catal. 8, 5175–5187 (2018).

    CAS  Google Scholar 

  9. Tu, H., Zhu, S., Qing, F. & Chu, L. Recent advances in nickel-catalyzed three-component difunctionalization of unactivated alkenes. Synthesis 52, 1346–1356 (2020).

    CAS  Google Scholar 

  10. Coombs, J. R. & Morken, J. P. Catalytic enantioselective functionalization of unactivated terminal alkenes. Angew. Chem. Int. Ed. 55, 2636–2649 (2016).

    CAS  Google Scholar 

  11. Wang, Z.-X., Bai, X.-Y. & Li, B.-J. Metal-catalyzed substrate-directed enantioselective functionalization of unactivated alkenes. Chin. J. Chem. 37, 1174–1180 (2019).

    CAS  Google Scholar 

  12. Li, Z.-L., Fang, G.-C., Gu, Q.-S. & Liu, X.-Y. Recent advances in copper-catalysed radical-involved asymmetric 1,2-difunctionalization of alkenes. Chem. Soc. Rev. 49, 32–48 (2020).

    CAS  PubMed  Google Scholar 

  13. Li, Y., Wu, D., Cheng, H.-G. & Yin, G. Difunctionalization of alkenes involving metal migration. Angew. Chem. Int. Ed. 59, 7990–8003 (2020).

    CAS  Google Scholar 

  14. Vasseur, A., Bruffaerts, J. & Marek, I. Remote functionalization through alkene isomerization. Nat. Chem. 8, 209–219 (2016).

    CAS  PubMed  Google Scholar 

  15. Sommer, H., Julia-Hernandez, F., Martin, R. & Marek, I. Walking metals for remote functionalization. ACS Cent. Sci. 4, 153–165 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Miry, J., Pozo, C., Toste, F. D. & Fustero, S. Enantioselective palladium-catalyzed oxidative β,β-fluoroarylation of α,β-unsaturated carbonyl derivatives. Angew. Chem. Int. Ed. 55, 9045–9049 (2016).

    Google Scholar 

  17. Yamamoto, E. et al. Development and analysis of a Pd(0)-catalyzed enantioselective 1,1-diarylation of acrylates enabled by chiral anion phase transfer. J. Am. Chem. Soc. 138, 15877–15880 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. He, Y., Yang, Z., Thornbury, R. T. & Toste, F. D. Palladium-catalyzed enantioselective 1,1-fluoroarylation of aminoalkenes. J. Am. Chem. Soc. 137, 12207–12210 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Maity, S., Potter, T. J. & Ellman, J. A. α-Branched amines by catalytic 1,1-addition of C–H bonds and aminating agents to terminal alkenes. Nat. Catal. 2, 756–762 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Collins, B. S. L., Wilson, C. M., Myers, E. L. & Aggarwal, V. K. Asymmetric synthesis of secondary and tertiary boronic esters. Angew. Chem. Int. Ed. 56, 11700–11733 (2017).

    CAS  Google Scholar 

  21. Lovinger, G. J. & Morken, J. P. Ni-catalyzed enantioselective conjunctive coupling with C(sp3) electrophiles: a radical–ionic mechanistic dichotomy. J. Am. Chem. Soc. 139, 17293–17296 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sun, C., Potter, B. & Morken, J. P. A catalytic enantiotopic-group-selective Suzuki reaction for the construction of chiral organoboronates. J. Am. Chem. Soc. 136, 6534–6537 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, Z., Bachman, S., Dudnik, A. S. & Fu, G. C. Nickel-catalyzed enantioconvergent borylation of racemic secondary benzylic electrophiles. Angew. Chem. Int. Ed. 57, 14529–14532 (2018).

    CAS  Google Scholar 

  24. Basch, C. H., Cobb, K. M. & Watson, M. P. Nickel-catalyzed borylation of benzylic ammonium salts: stereospecific synthesis of enantioenriched benzylic boronates. Org. Lett. 18, 136–139 (2016).

    CAS  PubMed  Google Scholar 

  25. Pound, S. M. & Watson, M. P. Asymmetric synthesis via stereospecific C–N and C–O bond activation of alkyl amine and alcohol derivatives. Chem. Commun. 54, 12286–12301 (2018).

    CAS  Google Scholar 

  26. Noh, D., Chea, H., Ju, J. & Yun, J. Highly regio- and enantioselective copper-catalyzed hydroboration of styrenes. Angew. Chem. Int. Ed. 48, 6062–6064 (2009).

    CAS  Google Scholar 

  27. Chen, X., Cheng, Z., Guo, J. & Lu, Z. Asymmetric remote C–H borylation of internal alkenes via alkene isomerization. Nat. Commun. 9, 3939 (2018).

    PubMed  PubMed Central  Google Scholar 

  28. Pang, Y. et al. Rhodium-catalyzed B−H bond insertion reactions of unstabilized diazo compounds generated in situ from tosylhydrazones. J. Am. Chem. Soc. 140, 10663–10668 (2018).

    CAS  PubMed  Google Scholar 

  29. Nelson, H. M., Williams, B. D., Miro, J. & Toste, F. D. Enantioselective 1,1-arylborylation of alkenes: merging chiral anion phase transfer with Pd catalysis. J. Am. Chem. Soc. 137, 3213–3216 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bergmann, A. M., Dorn, S. K., Smith, K. B., Logan, K. M. & Brown, M. K. Catalyst-controlled 1,2-and 1,1-arylboration of α-alkyl alkenyl arenes. Angew. Chem. Int. Ed. 58, 1719–1723 (2019).

    CAS  Google Scholar 

  31. Suginome, M. Catalytic carboborations. Chem. Rec. 10, 348–358 (2010).

    CAS  PubMed  Google Scholar 

  32. Jin, S. & Larionov, O. V. A radical new look for alkene carboboration. Chem 4, 1194–1207 (2018).

    Google Scholar 

  33. Liu, Z., Gao, Y., Zeng, T. & Engle, K. M. Transition-metal-catalyzed 1,2-carboboration of alkenes: strategies, mechanisms, and stereocontrol. Isr. J. Chem. 60, 219–229 (2020).

    CAS  Google Scholar 

  34. Perry, G. J. P., Jia, T. & Procter, D. J. Copper-catalyzed functionalization of 1,3-dienes: hydrofunctionalization, borofunctionalization, and difunctionalization. ACS Catal. 10, 1485–1499 (2020).

    CAS  Google Scholar 

  35. Logan, K. M., Sardini, S. R., White, S. D. & Brown, M. K. Nickel-catalyzed stereoselective arylboration of unactivated alkenes. J. Am. Chem. Soc. 140, 159–162 (2018).

    CAS  PubMed  Google Scholar 

  36. Logan, K. M., Smith, K. B. & Brown, M. K. Copper/palladium synergistic catalysis for the syn- and anti-selective carboboration of alkenes. Angew. Chem. Int. Ed. 54, 5228–5231 (2015).

    CAS  Google Scholar 

  37. Chen, L.-A., Lear, A. R., Gao, P. & Brown, M. K. Nickel-catalyzed arylboration of alkenylarenes: synthesis of boron substituted quaternary carbons and regiodivergent reactions. Angew. Chem. Int. Ed. 58, 10956–10960 (2019).

    CAS  Google Scholar 

  38. Joung, S., Bergmann, A. M. & Brown, M. K. Ni-catalyzed 1,2-benzylboration of 1,2-disubstituted unactivated alkenes. Chem. Sci. 10, 10944–10947 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, W. et al. Migratory arylboration of unactivated alkenes enabled by nickel catalysis. Angew. Chem. Int. Ed. 58, 4612–4616 (2019).

    CAS  Google Scholar 

  40. Wang, W., Ding, C., Pang, H. & Yin, G. Nickel-catalyzed 1,2-arylboration of vinylarenes. Org. Lett. 21, 3968–3971 (2019).

    CAS  PubMed  Google Scholar 

  41. Li, Y. et al. Nickel-catalyzed 1,1-alkylboration of electronically unbiased terminal alkenes. Angew. Chem. Int. Ed. 58, 8872–8876 (2019).

    CAS  Google Scholar 

  42. Guo, J., Cheng, B., Shen, X. & Lu, Z. Cobalt-catalyzed asymmetric sequential hydroboration/hydrogenation of internal alkynes. J. Am. Chem. Soc. 139, 15316–15319 (2017).

    CAS  PubMed  Google Scholar 

  43. Sardini, S. R. et al. Ni-catalyzed arylboration of unactivated alkenes: scope and mechanistic studies. J. Am. Chem. Soc. 141, 9391–9400 (2019).

    PubMed  PubMed Central  Google Scholar 

  44. Anthony, D., Lin, Q., Baudet, J. & Diao, T. Nickel-catalyzed asymmetric reductive diarylation of vinylarenes. Angew. Chem. Int. Ed. 58, 3198–3202 (2019).

    CAS  Google Scholar 

  45. Gutierrez, O. et al. Nickel-catalyzed cross-coupling of photoredox-generated radicals: uncovering a general manifold for stereoconvergence in nickel-catalyzed cross-couplings. J. Am. Chem. Soc. 137, 4896–4899 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Leonori, D. & Aggarwal, V. K. Stereospecific couplings of secondary and tertiary boronic esters. Angew. Chem. Int. Ed. 54, 1082–1096 (2015).

    CAS  Google Scholar 

  47. Wu, W. et al. Iridium catalysts with f-amphox ligands: asymmetric hydrogenation of simple ketones. Org. Lett. 18, 2938–2941 (2016).

    CAS  PubMed  Google Scholar 

  48. Matteson, D. S. α-Halo boronic esters: intermediates for stereodirected synthesis. Chem. Rev. 89, 1535–1551 (1989).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Q. Zhou, W.-B. Liu, A. Lei and X. Zhang at Wuhan University for lending lab space and sharing the basic instruments. We are grateful for the financial support from the National Natural Science Foundation of China (21702151, 21871211) and the Fundamental Research Funds for Central Universities (2042019kf0208). We thank S. Liu for her help with the NMR measurements. We acknowledge W. Reid (RWTH Aachen University) for his insightful discussion and generous help on the manuscript preparation.

Author information

Authors and Affiliations

Authors

Contributions

W.W. designed and carried out most of the chemical reactions and analysed the data. W.W. and C.D. supported the design and performance of synthetic experiments. G.Y. designed and supervised the project. G.Y. and W.W. wrote the manuscript.

Corresponding author

Correspondence to Guoyin Yin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–279, Tables 1–3 and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Ding, C. & Yin, G. Catalyst-controlled enantioselective 1,1-arylboration of unactivated olefins. Nat Catal 3, 951–958 (2020). https://doi.org/10.1038/s41929-020-00523-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-020-00523-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing