Skip to main content

Advertisement

Log in

Multisite phosphorylation of the cardiac ryanodine receptor: a random or coordinated event?

  • Perspectives
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Many proteins are phosphorylated at more than one phosphorylation site to achieve precise tuning of protein function and/or integrate a multitude of signals into the activity of one protein. Increasing the number of phosphorylation sites significantly broadens the complexity of molecular mechanisms involved in processing multiple phosphorylation sites by one or more distinct kinases. The cardiac ryanodine receptor (RYR2) is a well-established multiple phospho-target of kinases activated in response to β-adrenergic stimulation because this Ca2+ channel is a critical component of Ca2+ handling machinery which is responsible for β-adrenergic enhancement of cardiac contractility. Our review presents a selective overview of the extensive, often conflicting, literature which focuses on identifying reliable lines of evidence to establish if multiple RYR2 phosphorylation is achieved randomly or in a specific sequence, and whether phosphorylation at individual sites is functionally specific and additive or similar and can therefore be substituted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Acimovic I, Refaat MM, Moreau A, Salykin A, Reiken S, Sleiman Y, Souidi M, Přibyl J, Kajava AV, Richard S, Lu JT, Chevalier P, Skládal P, Dvořak P, Rotrekl V, Marks AR, Scheinman MM, Lacampagne A, Meli AC (2018) Post-translational modifications and diastolic calcium leak associated to the novel RyR2-D3638A mutation lead to CPVT in patient-specific hiPSC-derived cardiomyocytes. J Clin Med 7:423. https://doi.org/10.3390/jcm7110423

    Article  CAS  PubMed Central  Google Scholar 

  2. Ai X, Curran JW, Shannon TR, Bers DM, Pogwizd SM (2005) Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circ Res 97:1314–1322. https://doi.org/10.1161/01.RES.0000194329.41863.89

    Article  CAS  PubMed  Google Scholar 

  3. Alvarado FJ, Chen X, Valdivia HH (2017) Ablation of the cardiac ryanodine receptor phospho-site Ser2808 does not alter the adrenergic response or the progression to heart failure in mice. Elimination of the genetic background as critical variable. J Mol Cell Cardiol 103:40–47. https://doi.org/10.1016/j.yjmcc.2017.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Antos CL, Frey N, Marx SO, Reiken S, Gaburjakova M, Richardson JA, Marks AR, Olson EN (2001) Dilated cardiomyopathy and sudden death resulting from constitutive activation of protein kinase A. Circ Res 89:997–1004. https://doi.org/10.1161/hh2301.100003

    Article  CAS  PubMed  Google Scholar 

  5. Ather S, Wang W, Wang Q, Li N, Anderson ME, Wehrens XH (2013) Inhibition of CaMKII phosphorylation of RyR2 prevents inducible ventricular arrhythmias in mice with Duchenne muscular dystrophy. Heart Rhythm 10:592–599. https://doi.org/10.1016/j.hrthm.2012.12.016

    Article  PubMed  Google Scholar 

  6. Baine S, Thomas J, Bonilla I, Ivanova M, Belevych A, Li J, Veeraraghavan R, Radwanski PB, Carnes C, Gyorke S (2020) Muscarinic-dependent phosphorylation of the cardiac ryanodine receptor by protein kinase G is mediated by PI3K–AKT–nNOS signaling. J Biol Chem 295:11720–11728. https://doi.org/10.1074/jbc.RA120.014054

    Article  CAS  PubMed  Google Scholar 

  7. Benkusky NA, Weber CS, Scherman JA, Farrell EF, Hacker TA, John MC, Powers PA, Valdivia HH (2007) Intact β-adrenergic response and unmodified progression toward heart failure in mice with genetic ablation of a major protein kinase A phosphorylation site in the cardiac ryanodine receptor. Circ Res 101:819–829. https://doi.org/10.1161/CIRCRESAHA.107.153007

    Article  CAS  PubMed  Google Scholar 

  8. Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205. https://doi.org/10.1038/415198a

    Article  CAS  PubMed  Google Scholar 

  9. Bers DM (2012) Ryanodine receptor S2808 phosphorylation in heart failure: smoking gun or red herring. Circ Res 110:796–799. https://doi.org/10.1161/CIRCRESAHA.112.265579

    Article  CAS  PubMed  Google Scholar 

  10. Blayney LM, Jones JL, Griffiths J, Lai FA (2010) A mechanism of ryanodine receptor modulation by FKBP12/12.6, protein kinase A, and K201. Cardiovasc Res 85:68–78. https://doi.org/10.1093/cvr/cvp273

    Article  CAS  PubMed  Google Scholar 

  11. Blumenthal DK, Stull JT, Gill GN (1978) Phosphorylation of cardiac troponin by guanosine 3’:5’-monophosphate dependent protein kinase. J Biol Chem 253:324–326

    CAS  PubMed  Google Scholar 

  12. Bovo E, Huke S, Blatter LA, Zima AV (2017) The effect of PKA-mediated phosphorylation of ryanodine receptor on SR Ca(2+) leak in ventricular myocytes. J Mol Cell Cardiol 104:9–16. https://doi.org/10.1016/j.yjmcc.2017.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carter S, Colyer J, Sitsapesan R (2006) Maximum phosphorylation of the cardiac ryanodine receptor at Serine-2809 by protein kinase A produces unique modifications to channel gating and conductance not observed at lower levels of phosphorylation. Circ Res 98:1506–1513. https://doi.org/10.1161/01.RES.0000227506.43292.df

    Article  CAS  PubMed  Google Scholar 

  14. Carter S, Pitt SJ, Colyer J, Sitsapesan R (2011) Ca2+-dependent phosphorylation of RyR2 can uncouple channel gating from direct cytosolic Ca2+ regulation. J Membr Biol 240:21–33. https://doi.org/10.1007/s00232-011-9339-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chao LH, Stratton MM, Lee IH, Rosenberg OS, Levitz J, Mandell DJ, Kortemme T, Groves JT, Schulman H, Kuriyan J (2011) A mechanism for tunable autoinhibition in the structure of a human Ca2+/calmodulin-dependent kinase II holoenzyme. Cell 146:732–745. https://doi.org/10.1016/j.cell.2011.07.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen W, Wang R, Chen B, Zhong X, Kong H, Bai Y, Zhou Q, Xie C, Zhang J, Guo A, Tian X, Jones PP, O'Mara ML, Liu Y, Mi T, Zhang L, Bolstad J, Semeniuk L, Cheng H, Zhang J, Chen J, Tieleman DP, Gillis AM, Duff HJ, Fill M, Song LS, Chen SR (2014) The ryanodine receptor store-sensing gate controls Ca2+ waves and Ca2+-triggered arrhythmias. Nat Med 20:184–192. https://doi.org/10.1038/nm.3440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cohen P (2000) The regulation of protein function by multisite phosphorylation-a 25 year update. TIBS 25:596–601. https://doi.org/10.1016/S0968-0004(00)01712-6

    Article  CAS  PubMed  Google Scholar 

  18. Colbran RJ, Schworer CM, Hashimoto Y, Fong YL, Rich DP, Smith MK, Soderling TR (1989) Calcium/calmodulin-dependent protein kinase II. Biochem J 258:313–325. https://doi.org/10.1042/bj2580313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Curran J, Hinton MJ, Ríos E, Bers DM, Shannon TR (2007) β-adrenergic enhancement of sarcoplasmic reticulum calcium leak in cardiac myocytes is mediated by calcium/calmodulin-dependent protein kinase. Circ Res 100:391–398. https://doi.org/10.1161/01.RES.0000258172.74570.e6

    Article  CAS  PubMed  Google Scholar 

  20. Currie S, Loughrey CM, Craig MA, Smith GL (2004) Calcium/calmodulin-dependent protein kinase IIdelta associates with the ryanodine receptor complex and regulates channel function in rabbit heart. Biochem J 377:357–366. https://doi.org/10.1042/BJ20031043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. De Jongh KS, Murphy BJ, Colvin AA, Hell JW, Takahashi M, Catterall WA (1996) Specific phosphorylation of a site in the full-length form of the α1 subunit of the cardiac L-type calcium channel by adenosine 3′,5′-cyclic monophosphate-dependent protein kinase. Biochemistry 35:10392–10402. https://doi.org/10.1021/bi953023c

    Article  PubMed  Google Scholar 

  22. Di Pasquale E, Lodola F, Miragoli M, Denegri M, Avelino-Cruz JE, Buonocore M, Nakahama H, Portararo P, Bloise R, Napolitano C, Condorelli G, Priori SG (2013) CaMKII inhibition rectifies arrhythmic phenotype in a patient-specific model of catecholaminergic polymorphic ventricular tachycardia. Cell Death Dis 4:e843. https://doi.org/10.1038/cddis.2013.369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dobrev D, Wehrens XH (2014) Role of RyR2 phosphorylation in heart failure and arrhythmias: controversies around ryanodine receptor phosphorylation in cardiac disease. Circ Res 114:1311–1319. https://doi.org/10.1161/CIRCRESAHA.114.300568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fatima A, Xu G, Shao K, Papadopoulos S, Lehmann M, Arnáiz-Cot JJ, Rosa AO, Nguemo F, Matzkies M, Dittmann S, Stone SL, Linke M, Zechner U, Beyer V, Hennies HC, Rosenkranz S, Klauke B, Parwani AS, Haverkamp W, Pfitzer G, Farr M, Cleemann L, Morad M, Milting H, Hescheler J, Saric T (2011) In vitro modeling of ryanodine receptor 2 dysfunction using human induced pluripotent stem cells. Cell Physiol Biochem 28:579–592. https://doi.org/10.1159/000335753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Faux MC, Scott JD (1996) Molecular glue: kinase anchoring and scaffold proteins. Cell 85:9–12. https://doi.org/10.1016/s0092-8674(00)81075-2

    Article  CAS  PubMed  Google Scholar 

  26. Feinmesser RL, Wicks SJ, Taverner CJ, Chantry A (1999) Ca2+/calmodulin-dependent kinase II phosphorylates the epidermal growth factor receptor on multiple sites in the cytoplasmic tail and Serine 744 within the kinase domain to regulate signal generation. J Biol Chem 274:16168–16173. https://doi.org/10.1074/jbc.274.23.16168

    Article  CAS  PubMed  Google Scholar 

  27. Ferrero P, Said M, Sánchez G, Vittone L, Valverde C, Donoso P, Mattiazzi A, Mundiña-Weilenmann C (2007) Ca2+/calmodulin kinase II increases ryanodine binding and Ca2+-induced sarcoplasmic reticulum Ca2+ release kinetics during β-adrenergic stimulation. J Mol Cell Cardiol 43:281–291. https://doi.org/10.1016/j.yjmcc.2007.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fischer TH, Herting J, Tirilomis T, Renner A, Neef S, Toischer K, Ellenberger D, Forster A, Schmitto JD, Gummert J, Schondube FA, Hasenfuss G, Maier LS, Sossalla S (2013) Ca2+/calmodulin-dependent protein kinase II and protein kinase A differentially regulate sarcoplasmic reticulum Ca2+ leak in human cardiac pathology. Circulation 128:970–981. https://doi.org/10.1161/CIRCULATIONAHA.113.001746

    Article  CAS  PubMed  Google Scholar 

  29. Gaburjakova J, Gaburjakova M (2016) Cardiac ryanodine receptor: Selectivity for alkaline earth metal cations points to the EF-hand nature of luminal binding sites. Bioelectrochemistry 109:49–56. https://doi.org/10.1016/j.bioelechem.2016.01.002

    Article  CAS  PubMed  Google Scholar 

  30. Gaburjakova M, Bal NC, Gaburjakova J, Periasamy M (2013) Functional interaction between calsequestrin and ryanodine receptor in the heart. Cell Mol Life Sci 70:2935–2945. https://doi.org/10.1007/s00018-012-1199-7

    Article  CAS  PubMed  Google Scholar 

  31. Gaburjakova J, Almassy J, Gaburjakova M (2020) Luminal addition of non-permeant Eu3+ interferes with luminal Ca2+ regulation of the cardiac ryanodine receptor. Bioelectrochemistry 132:107449. https://doi.org/10.1016/j.bioelechem.2019.107449

    Article  CAS  PubMed  Google Scholar 

  32. Grimm M, Brown JH (2010) β-adrenergic receptor signaling in the heart: role of CaMKII. J Mol Cell Cardiol 48:322–330. https://doi.org/10.1016/j.yjmcc.2009.10.016

    Article  CAS  PubMed  Google Scholar 

  33. Grimm M, Ling H, Brown JH (2011) Crossing signals: relationships between β-adrenergic stimulation and CaMKII activation. Heart Rhythm 8:1296–1298. https://doi.org/10.1016/j.hrthm.2011.02.027

    Article  PubMed  PubMed Central  Google Scholar 

  34. Grimm M, Ling H, Willeford A, Pereira L, Gray CB, Erickson JR, Sarma S, Respress JL, Wehrens XH, Bers DM, Brown JH (2015) CaMKIIdelta mediates β-adrenergic effects on RyR2 phosphorylation and SR Ca(2+) leak and the pathophysiological response to chronic β-adrenergic stimulation. J Mol Cell Cardiol 85:282–291. https://doi.org/10.1016/j.yjmcc.2015.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guo T, Zhang T, Mestril R, Bers DM (2006) Ca2+/calmodulin-dependent protein kinase II phosphorylation of ryanodine receptor does affect calcium sparks in mouse ventricular myocytes. Circ Res 99:398–406. https://doi.org/10.1161/01.RES.0000236756.06252.13

    Article  CAS  PubMed  Google Scholar 

  36. Gyorke I, Gyorke S (1998) Regulation of the cardiac ryanodine receptor channel by luminal Ca2+ involves luminal Ca2+ sensing sites. Biophys J 75:2801–2810. https://doi.org/10.1016/S0006-3495(98)77723-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hain J, Onoue H, Mayrleitner M, Fleischer S, Schindler H (1995) Phosphorylation modulates the function of the calcium release channel of sarcoplasmic reticulum from cardiac muscle. J Biol Chem 270:2074–2081. https://doi.org/10.1074/jbc.270.5.2074

    Article  CAS  PubMed  Google Scholar 

  38. Haji-Ghassemi O, Yuchi Z, Van Petegem F (2019) The cardiac ryanodine receptor phosphorylation hotspot embraces PKA in a phosphorylation-dependent manner. Mol Cell 75:39–52. https://doi.org/10.1016/j.molcel.2019.04.019

    Article  CAS  PubMed  Google Scholar 

  39. Hakamata Y, Nakai J, Takeshima H, Imoto K (1992) Primary structure and distribution of a novel ryanodine receptor/calcium release channel from rabbit brain. FEBS Lett 312:229–235. https://doi.org/10.1016/0014-5793(92)80941-9

    Article  CAS  PubMed  Google Scholar 

  40. Handhle A, Ormonde CE, Thomas NL, Bralesford C, Williams AJ, Lai FA, Zissimopoulos S (2016) Calsequestrin interacts directly with the cardiac ryanodine receptor luminal domain. J Cell Sci 129:3983–3988. https://doi.org/10.1242/jcs.191643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hanson PI, Kapiloff MS, Lou LL, Rosenfeld MG, Schulman H (1989) Expression of a multifunctional Ca2+/calmodulin-dependent protein kinase and mutational analysis of its autoregulation. Neuron 3:59–70. https://doi.org/10.1016/0896-6273(89)90115-3

    Article  CAS  PubMed  Google Scholar 

  42. Hanson PI, Meyer T, Stryer L, Schulman H (1994) Dual role of calmodulin in autophosphorylation of multifunctional CaM kinase may underlie decoding of calcium signals. Neuron 12:943–956. https://doi.org/10.1016/0896-6273(94)90306-9

    Article  CAS  PubMed  Google Scholar 

  43. Hasenfuss G (1998) Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovasc Res 39:60–76. https://doi.org/10.1016/s0008-6363(98)00110-2

    Article  CAS  PubMed  Google Scholar 

  44. Ho H-T, Belevych AE, Liu B, Bonilla IM, Radwański PB, Kubasov IV, Valdivia HH, Schober K, Carnes CA, Györke S (2016) Muscarinic stimulation facilitates sarcoplasmic reticulum Ca release by modulating ryanodine receptor 2 phosphorylation through protein kinase G and Ca/calmodulin-dependent protein kinase II. Hypertension 68:1171–1178. https://doi.org/10.1161/HYPERTENSIONAHA.116.07666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ho H-T, Thambidorai S, Knollmann BC, Billman GE, Györke S, Kalyanasundaram A (2017) Long-term aerobic exercise in Calsequestrin2 knockout mice accentuates vagal antagonism during β-adrenergic stimulation which restricts heart rate acceleration and paradoxically increases abnormal ryanodine receptor calcium leak in ventricular myocytes. Heart Rhythm 15:430–441. https://doi.org/10.1016/j.hrthm.2017.10.008

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hohenegger M, Suko J (1993) Phosphorylation of the purified cardiac ryanodine receptor by exogenous and endogenous protein kinase. Biochem J 296:303–308. https://doi.org/10.1042/bj2960303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Holmberg CI, Tran SEF, Eriksson JE, Sistonen L (2002) Multisite phosphorylation provides sophisticated regulation of transcription factors. Trends Biochem Sci 27:619–627. https://doi.org/10.1016/s0968-0004(02)02207-7

    Article  CAS  PubMed  Google Scholar 

  48. Houser SR (2010) Does protein kinase A-mediated phosphorylation of the cardiac ryanodine receptor play any role in adrenergic regulation of calcium handling in health and disease? Circ Res 106:1672–1674. https://doi.org/10.1161/CIRCRESAHA.110.221853

    Article  CAS  PubMed  Google Scholar 

  49. Houser SR (2014) Role of RyR2 phosphorylation in heart failure and arrhythmias: protein kinase A-mediated hyperphosphorylation of the ryanodine receptor at Serine 2808 does not alter cardiac contractility or cause heart failure and arrhythmias. Circ Res 114:1320–1327. https://doi.org/10.1161/CIRCRESAHA.114.300569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Huggins JP, Cook EA, Piggott JR, Mattinsley TJ, England PJ (1989) Phospholamban is a good substrate for cyclic GMP-dependent protein kinase in vitro, but not in intact cardiac or smooth muscle. Biochem J 260:829–835. https://doi.org/10.1042/bj2600829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huke S, Bers DM (2007) Temporal dissociation of frequency-dependent acceleration of relaxation and protein phosphorylation by CaMKII. J Mol Cell Cardiol 42:590–599. https://doi.org/10.1016/j.yjmcc.2006.12.007

    Article  CAS  PubMed  Google Scholar 

  52. Huke S, Bers DM (2008) Ryanodine receptor phosphorylation at Serine 2030, 2808 and 2814 in rat cardiomyocytes. Biochem Biophys Res Commun 376:80–85. https://doi.org/10.1016/j.bbrc.2008.08.084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, Villen J, Haas W, Sowa ME, Gygi SP (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143:1174–1189. https://doi.org/10.1016/j.cell.2010.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Itzhaki I, Maizels L, Huber I, Zwi-Dantsis L, Caspi O, Winterstern A, Feldman O, Gepstein A, Arbel G, Hammerman H, Boulos M, Gepstein L (2011) Modelling the long QT syndrome with induced pluripotent stem cells. Nature 471:225–229. https://doi.org/10.1038/nature09747

    Article  CAS  PubMed  Google Scholar 

  55. Jiang LH, Gawler DJ, Hodson N, Milligan CJ, Pearson HA, Porter V, Wray D (2000) Regulation of cloned cardiac L-type calcium channels by cGMP-dependent protein kinase. J Biol Chem 275:6135–6143. https://doi.org/10.1074/jbc.275.9.6135

    Article  CAS  PubMed  Google Scholar 

  56. Jiang D, Xiao B, Zhang L, Chen SRW (2002) Enhanced basal activity of a cardiac Ca2+ release channel (ryanodine receptor) mutant associated with ventricular tachycardia and sudden death. Circ Res 91:218–225. https://doi.org/10.1161/01.RES.0000028455.36940.5E

    Article  CAS  PubMed  Google Scholar 

  57. Jones LR, Maddock SW, Hathaway DR (1981) Membrane localization of myocardial type II cyclic AMP-dependent protein kinase activity. Biochim Biophys Acta 641:242–253. https://doi.org/10.1016/0005-2736(81)90588-5

    Article  CAS  PubMed  Google Scholar 

  58. Jones PP, Meng X, Xiao B, Cai S, Bolstad J, Wagenknecht T, Liu Z, Chen SR (2008) Localization of PKA phosphorylation site, Ser(2030), in the three-dimensional structure of cardiac ryanodine receptor. Biochem J 410:261–270. https://doi.org/10.1042/BJ20071257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kannankeril PJ, Mitchell BM, Goonasekera SA, Chelu MG, Zhang W, Sood S, Kearney DL, Danila CI, De Biasi M, Wehrens XH, Pautler RG, Roden DM, Taffet GE, Dirksen RT, Anderson ME, Hamilton SL (2006) Mice with the R176Q cardiac ryanodine receptor mutation exhibit catecholamine-induced ventricular tachycardia and cardiomyopathy. Proc Natl Acad Sci U S A 103:12179–12184. https://doi.org/10.1073/pnas.0600268103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Katra RP, Laurita KR (2005) Cellular mechanism of calcium-mediated triggered activity in the heart. Circ Res 96:535–542. https://doi.org/10.1161/01.RES.0000159387.00749.3c

    Article  CAS  PubMed  Google Scholar 

  61. Katra RP, Oya T, Hoeker GS, Laurita KR (2007) Ryanodine receptor dysfunction and triggered activity in the heart. Am J Phys 292:H2144–H2151. https://doi.org/10.1152/ajpheart.00924.2006

    Article  CAS  Google Scholar 

  62. Kemp BE, Pearson RB (1990) Protein kinase recognition sequence motifs. Trends Biochem Sci 15:342–346. https://doi.org/10.1016/0968-0004(90)90073-k

    Article  CAS  PubMed  Google Scholar 

  63. Kennelly PJ, Krebs EG (1991) Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J Biol Chem 266:15555–15558

    CAS  PubMed  Google Scholar 

  64. Knollmann BC, Chopra N, Hlaing T, Akin B, Yang T, Ettensohn K, Knollmann BE, Horton KD, Weissman NJ, Holistat I, Zhang W, Roden DM, Jones LR, Franzini-Armstrong C, Pfeifer K (2006) Casq2 deletion causes sarcoplasmic reticulum volume increase, premature Ca2+ release, and catecholaminergic polymorphic ventricular tachycardia. J Clin Invest 116:2510–2520. https://doi.org/10.1172/JCI29128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kohlhaas M, Zhang T, Seidler T, Zibrova D, Dybkova N, Steen A, Wagner S, Chen L, Heller Brown J, Bers DM, Maier LS (2006) Increased sarcoplasmic reticulum calcium leak but unaltered contractility by acute CaMKII overexpression in isolated rabbit cardiac myocytes. Circ Res 98:235–244. https://doi.org/10.1161/01.RES.0000200739.90811.9f

    Article  CAS  PubMed  Google Scholar 

  66. Krebs EG, Beavo JA (1979) Phosphorylation-dephosphorylation of enzymes. Annu Rev Biochem 43:923–959. https://doi.org/10.1146/annurev.bi.48.070179.004423

    Article  Google Scholar 

  67. Layland J, Li J-M, Shah AM (2002) Role of cyclic GMP-dependent protein kinase in the contractile response to exogenous nitric oxide in rat cardiac myocytes. J Physiol 540:457–467. https://doi.org/10.1113/jphysiol.2001.014126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee TS, Karl R, Moosmang S, Lenhardt P, Klugbauer N, Hofmann F, Kleppisch T, Welling A (2006) Calmodulin kinase II is involved in voltage-dependent facilitation of the L-type Cav1.2 calcium channel: identification of the phosphorylation sites. J Biol Chem 281:25560–25567. https://doi.org/10.1074/jbc.M508661200

    Article  CAS  PubMed  Google Scholar 

  69. Leenhardt A, Lucet V, Denjoy I, Grau F, Ngoc DD, Coumel P (1995) Catecholaminergic polymorphic ventricular tachycardia in children. A 7-year follow-up of 21 patients. Circulation 91:1512–1519. https://doi.org/10.1161/01.cir.91.5.1512

    Article  CAS  PubMed  Google Scholar 

  70. Lehnart SE, Wehrens XHT, Reiken S, Warrier S, Belevych AE, Harvey RD, Richter W, Jin S-LC, Conti M, Marks AR (2005) Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell 123:25–35. https://doi.org/10.1016/j.cell.2005.07.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Levi RC, Alloatti G, Fischmeister R (1989) Cyclic GMP regulates the Ca-channel current in guinea pig ventricular myocytes. Pflugers Arch 413:685–687. https://doi.org/10.1007/BF00581823

    Article  CAS  PubMed  Google Scholar 

  72. Li Y, Kranias EG, Mignery GA, Bers DM (2002) Protein kinase A phosphorylation of the ryanodine receptor does not affect calcium sparks in mouse ventricular myocytes. Circ Res 90:309–316. https://doi.org/10.1161/hh0302.105660

    Article  CAS  PubMed  Google Scholar 

  73. Li J, Imtiaz MS, Beard NA, Dulhunty AF, Thorne R, van Helden DF, Laver DR (2013) β-adrenergic stimulation increases RyR2 activity via intracellular Ca2+ and Mg2+ regulation. PLoS One 8:e58334. https://doi.org/10.1371/journal.pone.0058334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lindemann JP, Watanabe AM (1985) Muscarinic cholinergic inhibition of adrenergic stimulation of phospholamban phosphorylation and Ca2+ transport in guinea pig ventricles. J Biol Chem 260:13122–12129

    CAS  PubMed  Google Scholar 

  75. Liu W, Pasek DA, Meissner G (1998) Modulation of Ca(2+)-gated cardiac muscle Ca(2+)-release channel (ryanodine receptor) by mono- and divalent ions. Am J Phys 274:C120–C128. https://doi.org/10.1152/ajpcell.1998.274.1.C120

    Article  CAS  Google Scholar 

  76. Liu N, Ruan Y, Denegri M, Bachetti T, Li Y, Colombi B, Napolitano C, Coetzee WA, Priori SG (2011) Calmodulin kinase II inhibition prevents arrhythmias in RyR2(R4496C+/-) mice with catecholaminergic polymorphic ventricular tachycardia. J Mol Cell Cardiol 50:214–222. https://doi.org/10.1016/j.yjmcc.2010.10.001

    Article  CAS  PubMed  Google Scholar 

  77. Lohse MJ, Engelhardt S, Danner S, Bohm M (1996) Mechanisms of β-adrenergic receptor desensitization: from molecular biology to heart failure. Basic Res Cardiol 191:29–34. https://doi.org/10.1007/BF00795359

    Article  Google Scholar 

  78. MacDonnell SM, Garcia-Rivas G, Scherman JA, Kubo H, Chen X, Valdivia H, Houser SR (2008) Adrenergic regulation of cardiac contractility does not involve phosphorylation of the cardiac ryanodine receptor at Serine 2808. Circ Res 102:e65–e72. https://doi.org/10.1161/CIRCRESAHA.108.174722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. MacLennan DH, Chen SR (2009) Store overload-induced Ca2+ release as a triggering mechanism for CPVT and MH episodes caused by mutations in RYR and CASQ genes. J Physiol 587:3113–3115. https://doi.org/10.1113/jphysiol.2009.172155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, Finn RD, Lopez R (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 47:W636–W641. https://doi.org/10.1093/nar/gkz268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Manno C, Figueroa LC, Gillespie D, Fitts R, Kang C, Franzini-Armstrong C, Rios E (2017) Calsequestrin depolymerizes when calcium is depleted in sarcoplasmic reticulum of working muscle. Proc Natl Acad Sci U S A 114:E638–E647. https://doi.org/10.1073/pnas.1620265114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, Marks AR (2000) PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101:365–376. https://doi.org/10.1016/S0092-8674(00)80847-8

    Article  CAS  PubMed  Google Scholar 

  83. Marx SO, Reiken S, Hisamatsu Y, Gaburjakova M, Gaburjakova J, Yang Y-M, Rosemblit N, Marks AR (2001) Phosphorylation-dependent regulation of ryanodine receptors: a novel role for Leucine/Isoleucine zippers. J Cell Biol 153:699–708. https://doi.org/10.1083/jcb.153.4.699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Méry P-F, Lohmann SM, Walter U, Fischmeister R (1991) Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci U S A 88:1197–1201. https://doi.org/10.1073/pnas.88.4.1197

    Article  PubMed  PubMed Central  Google Scholar 

  85. Milani-Nejad N, Janssen PML (2014) Small and large animal models in cardiac contraction research: advantages and disadvantages. Pharmacol Ther 141:235–249. https://doi.org/10.1016/j.pharmthera.2013.10.007

    Article  CAS  PubMed  Google Scholar 

  86. Mitchell RD, Simmerman HKB, Jones LR (1988) Ca2+ binding effects on protein conformation and protein interactions of canine cardiac calsequestrin. J Biol Chem 263:1376–1381

    CAS  PubMed  Google Scholar 

  87. Mitterdorfer J, Froschmayr M, Grabner M, Moebius FF, Glossmann H, Striessnig J (1996) Identification of PKA phosphorylation sites in the carboxyl terminus of L-type calcium channel α1 subunits. Biochemistry 35:9400–9406. https://doi.org/10.1021/bi960683o

    Article  CAS  PubMed  Google Scholar 

  88. Mochly-Rosen D (1995) Localization of protein kinases by anchoring proteins: a theme in signal transduction. Science 268:247–251. https://doi.org/10.1126/science.7716516

    Article  CAS  PubMed  Google Scholar 

  89. Nuss HB, Kääb S, Kass DA, Tomaselli GF, Marbán E (1999) Cellular basis of ventricular arrhythmias and abnormal automaticity in heart failure. Am J Phys 277:H80–H91. https://doi.org/10.1152/ajpheart.1999.277.1.H80

    Article  CAS  Google Scholar 

  90. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648. https://doi.org/10.1016/j.cell.2006.09.026

    Article  CAS  PubMed  Google Scholar 

  91. Otsu K, Willard HF, Khanna VK, Zorzato F, Green NM, MacLennan DH (1990) Molecular cloning of cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum. J Biol Chem 265:13472–13483

    CAS  PubMed  Google Scholar 

  92. Park K-S, Mohapatra DP, Misonou H, Trimmer JS (2006) Graded regulation of the Kv2.1 potassium channel by variable phosphorylation. Science 313:976–979. https://doi.org/10.1126/science.1124254

    Article  CAS  PubMed  Google Scholar 

  93. Pearson RB, Woodgett JR, Cohen P, Kemp BE (1985) Substrate specificity of a multifunctional calmodulin-dependent protein kinase. J Biol Chem 260:14471–14476

    CAS  PubMed  Google Scholar 

  94. Peng W, Shen H, Wu J, Guo W, Pan X, Wang R, Chen SR, Yan N (2016) Structural basis for the gating mechanism of the type 2 ryanodine receptor RYR2. Science 354:aah5324. https://doi.org/10.1126/science.aah5324

    Article  CAS  PubMed  Google Scholar 

  95. Pfitzer G, Riiegg JC, Flockerzi V, Hofmann F (1982) cGMP-dependent protein kinase decreases calcium sensitivity of skinned cardiac fibers. FEBS Lett 149:171–175. https://doi.org/10.1016/0014-5793(82)81095-8

    Article  CAS  PubMed  Google Scholar 

  96. Pogwizd SM, Schlotthauer K, Li L, Yuan W, Bers DM (2001) Arrhythmogenesis and contractile dysfunction in heart failure: roles of sodium-calcium exchange, inward rectifier potassium current, and residual β-adrenergic responsiveness. Circ Res 88:1159–1167. https://doi.org/10.1161/hh1101.091193

    Article  CAS  PubMed  Google Scholar 

  97. Potenza DM, Janicek R, Fernandez-Tenorio M, Camors E, Ramos-Mondragon R, Valdivia HH, Niggli E (2019) Phosphorylation of the ryanodine receptor 2 at Serine 2030 is required for a complete β-adrenergic response. J Gen Physiol 151:131–145. https://doi.org/10.1085/jgp.201812155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Reiken S, Gaburjakova M, Gaburjakova J, He K-I, Prieto A, Becker E, G-h Y, Wang J, Burkhoff D, Marks AR (2001) β-adrenergic receptor blockers restore cardiac calcium release channel (ryanodine receptor) structure and function in heart failure. Circulation 104:2843–2848. https://doi.org/10.1161/hc4701.099578

    Article  CAS  PubMed  Google Scholar 

  99. Reiken S, Gaburjakova M, Guatimosim S, Gomez AM, D’Armiento J, Burkhoff D, Wang J, Vassort G, Lederer WJ, Marks AR (2003) Protein kinase A phosphorylation of the cardiac calcium release channel (ryanodine receptor) in normal and failing hearts. Role of phosphatases and response to isoproterenol. J Biol Chem 278:444–453. https://doi.org/10.1074/jbc.M207028200

    Article  CAS  PubMed  Google Scholar 

  100. Ringheim GE, Taylor SS (1990) Dissecting the domain structure of the regulatory subunit of cAMP-dependent protein kinase I and elucidating the role of MgATP. J Biol Chem 265:4800–4808

    CAS  PubMed  Google Scholar 

  101. Salazar C, Höfer T (2009) Multisite protein phosphorylation--from molecular mechanisms to kinetic models. FEBS J 276:3177–3198. https://doi.org/10.1111/j.1742-4658.2009.07027.x

    Article  CAS  PubMed  Google Scholar 

  102. Scott BT, Simmerman HK, Collins JH, Nadal-Ginard B, Jones LR (1988) Complete amino acid sequence of canine cardiac calsequestrin deduced by cDNA cloning. J Biol Chem 263:8958–8964

    CAS  PubMed  Google Scholar 

  103. Shan J, Betzenhauser MJ, Kushnir A, Reiken S, Meli AC, Wronska A, Dura M, Chen BX, Marks AR (2010) Role of chronic ryanodine receptor phosphorylation in heart failure and β-adrenergic receptor blockade in mice. J Clin Invest 120:4375–4387. https://doi.org/10.1172/JCI37649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Shan J, Kushnir A, Betzenhauser MJ, Reiken S, Li J, Lehnart SE, Lindegger N, Mongillo M, Mohler PJ, Marks AR (2010) Phosphorylation of the ryanodine receptor mediates the cardiac fight or flight response in mice. J Clin Invest 120:4388–4398. https://doi.org/10.1172/JCI32726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. https://doi.org/10.1038/msb.2011.75

    Article  PubMed  PubMed Central  Google Scholar 

  106. Stange M, Xu L, Balshaw D, Yamaguchi N, Meissner G (2003) Characterization of recombinant skeletal muscle (Ser-2843) and cardiac muscle (Ser-2809) ryanodine receptor phosphorylation mutants. J Biol Chem 278:51693–51702. https://doi.org/10.1074/jbc.M310406200

    Article  CAS  PubMed  Google Scholar 

  107. Sufu-Shimizu Y, Okuda S, Kato T, Nishimura S, Uchinoumi H, Oda T, Kobayashi S, Yamamoto T, Yano M (2020) Stabilizing cardiac ryanodine receptor prevents the development of cardiac dysfunction and lethal arrhythmia in Ca2+/calmodulin-dependent protein kinase IIδc transgenic mice. Biochem Biophys Res Commun 524:431–438. https://doi.org/10.1016/j.bbrc.2020.01.107

    Article  CAS  PubMed  Google Scholar 

  108. Swiderek K, Jaquet K, Meyer HE, Schachtele C, Hofmann F, Heilmeyer LMG (1990) Sites phosphorylated in bovine cardiac troponin T and I. Characterization by 31P-NMR spectroscopy and phosphorylation by protein kinases. Eur J Biochem 190:575–582. https://doi.org/10.1111/j.1432-1033.1990.tb15612.x

    Article  CAS  PubMed  Google Scholar 

  109. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676. https://doi.org/10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  110. Tencerova B, Zahradnikova A, Gaburjakova J, Gaburjakova M (2012) Luminal Ca2+ controls activation of the cardiac ryanodine receptor by ATP. J Gen Physiol 140:93–108. https://doi.org/10.1085/jgp.201110708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tong S, Zhang L, Joseph J, Jiang X (2019) A novel, potential therapeutic target in diabetic cardiomyocytes: ROCK2. Int J Cardiol 288:121. https://doi.org/10.1016/j.ijcard.2019.03.045

    Article  PubMed  Google Scholar 

  112. Tunwell RE, Wickenden C, Bertrand BM, Shevchenko VI, Walsh MB, Allen PD, Lai FA (1996) The human cardiac muscle ryanodine receptor-calcium release channel: identification, primary structure and topological analysis. Biochem J 318:477–487. https://doi.org/10.1042/bj3180477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Uehara A, Yasukochi M, Mejía-Alvarez R, Fill M, Imanaga I (2002) Gating kinetics and ligand sensitivity modified by phosphorylation of cardiac ryanodine receptors. Pflugers Arch 444:202–212. https://doi.org/10.1007/s00424-002-0791-3

    Article  CAS  PubMed  Google Scholar 

  114. Ullrich ND, Valdivia HH, Niggli E (2012) PKA phosphorylation of cardiac ryanodine receptor modulates SR luminal Ca2+ sensitivity. J Mol Cell Cardiol 53:33–42. https://doi.org/10.1016/j.yjmcc.2012.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Valdivia HH (2012) Ryanodine receptor phosphorylation and heart failure: phasing out S2808 and "criminalizing" S2814. Circ Res 110:1398–1402. https://doi.org/10.1161/CIRCRESAHA.112.270876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. van Oort RJ, McCauley MD, Dixit SS, Pereira L, Yang Y, Respress JI, Wang Q, De Almeida AC, Skapura DG, Anderson ME, Bers DM, Wehrens XH (2010) Ryanodine receptor phosphorylation by calcium/calmodulin-dependent protein kinase II promotes life-threatening ventricular arrhythmias in mice with heart failure. Circulation 122:2669–2679. https://doi.org/10.1161/CIRCULATIONAHA.110.982298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. van Oort RJ, Respress JI, Li N, Reynolds C, De Almeida AC, Skapura DG, De Windt LJ, Wehrens XH (2010) Accelerated development of pressure overload-induced cardiac hypertrophy and dysfunction in an RyR2-R176Q knockin mouse model. Hypertension 55:932–938. https://doi.org/10.1161/HYPERTENSIONAHA.109.146449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Walweel K, Molenaar P, Imtiaz MS, Denniss A, Dos Remedios C, van Helden DF, Dulhunty AF, Laver DR, Beard NA (2017) Ryanodine receptor modification and regulation by intracellular Ca(2+) and Mg(2+) in healthy and failing human hearts. J Mol Cell Cardiol 104:53–62. https://doi.org/10.1016/j.yjmcc.2017.01.016

    Article  CAS  PubMed  Google Scholar 

  119. Walweel K, Gomez-Hurtado N, Rebbeck RT, Oo YW, Beard NA, Molenaar P, Dos Remedios C, van Helden DF, Cornea RL, Knollmann BC, Laver DR (2019) Calmodulin inhibition of human RyR2 channels requires phosphorylation of RyR2-S2808 or RyR2-S2814. J Mol Cell Cardiol 130:96–106. https://doi.org/10.1016/j.yjmcc.2019.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wang W, Zhu W, Wang S, Yang D, Crow MT, Xiao R-P, Cheng H (2004) Sustained β1-adrenergic stimulation modulates cardiac contractility by Ca2+/calmodulin kinase signaling pathway. Circ Res 95:798–806. https://doi.org/10.1161/01.RES.0000145361.50017.aa

    Article  CAS  PubMed  Google Scholar 

  121. Wehrens XH (2011) CaMKII regulation of the cardiac ryanodine receptor and sarcoplasmic reticulum calcium release. Heart Rhythm 8:323–325. https://doi.org/10.1016/j.hrthm.2010.09.079

    Article  PubMed  Google Scholar 

  122. Wehrens XHT, Lehnart SE, Reiken SR, Marks AR (2004) Ca2+/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ Res 94:e61–e70. https://doi.org/10.1161/01.RES.0000125626.33738.E2

    Article  CAS  PubMed  Google Scholar 

  123. Wehrens XH, Lehnart SE, Reiken S, Vest JA, Wronska A, Marks AR (2006) Ryanodine receptor/calcium release channel PKA phosphorylation: a critical mediator of heart failure progression. Proc Natl Acad Sci U S A 103:511–518. https://doi.org/10.1073/pnas.0510113103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Witcher DR, Kovacs RJ, Schulman H, Cefali DC, Jones LR (1991) Unique phosphorylation site on the cardiac ryanodine receptor regulates calcium channel activity. J Biol Chem 266:11144–11152

    CAS  PubMed  Google Scholar 

  125. Wu RC, Qin J, Yi P, Wong J, Tsai SY, Tsai MJ, O'Malley BW (2004) Selective phosphorylations of the SRC-3/AIB1 coactivator integrate genomic responses to multiple cellular signaling pathways. Mol Cell 15:937–949. https://doi.org/10.1016/j.molcel.2004.08.019

    Article  CAS  PubMed  Google Scholar 

  126. Xiao B, Sutherland C, Walsh MP, Chen SR (2004) Protein kinase A phosphorylation at Serine-2808 of the cardiac Ca2+-release channel does not dissociate 12.6-kDa FK506-binding protein (FKBP12.6). Circ Res 94:487–495. https://doi.org/10.1161/01.RES.0000115945.89741.22

    Article  CAS  PubMed  Google Scholar 

  127. Xiao B, Jiang MT, Zhao M, Yang D, Sutherland C, Lai FA, Walsh MP, Warltier DC, Cheng H, Chen SR (2005) Characterization of a novel PKA phosphorylation site, Serine-2030, reveals no PKA hyperphosphorylation of the cardiac ryanodine receptor in canine heart failure. Circ Res 96:847–855. https://doi.org/10.1161/01.RES.0000163276.26083.e8

    Article  CAS  PubMed  Google Scholar 

  128. Xiao B, Zhong G, Obayashi M, Yang D, Chen K, Walsh MP, Shimoni Y, Cheng H, Keurs HT, Chen SRW (2006) Ser-2030, but not Ser-2808, is the major phosphorylation site in cardiac ryanodine receptors responding to protein kinase A activation upon β-adrenergic stimulation in normal and failing hearts. Biochem J 396:7–16. https://doi.org/10.1042/BJ20060116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Xiao B, Tian X, Xie W, Jones PP, Cai S, Wang X, Jiang D, Kong H, Zhang L, Chen K, Walsh MP, Cheng H, Chen SR (2007) Functional consequence of protein kinase A-dependent phosphorylation of the cardiac ryanodine receptor: sensitization of store overload-induced Ca2+ release. J Biol Chem 282:30256–30264. https://doi.org/10.1074/jbc.M703510200

    Article  CAS  PubMed  Google Scholar 

  130. Xu T, Yuchi Z (2019) Crystal structure of diamondback moth ryanodine receptor Repeat34 domain reveals insect-specific phosphorylation sites. BMC Biol 17:77. https://doi.org/10.1186/s12915-019-0698-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yang L, Liu G, Zakharov SI, Bellinger AM, Mongillo M, Marx SO (2007) Protein kinase G phosphorylates Cav1.2 α1C and β2 subunits. Circ Res 101:465–474. https://doi.org/10.1161/CIRCRESAHA.107.156976

    Article  CAS  PubMed  Google Scholar 

  132. Yazawa M, Hsueh B, Jia X, Pasca AM, Bernstein JA, Hallmayer J, Dolmetsch RE (2011) Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 471:230–234. https://doi.org/10.1038/nature09855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yuan W, Bers DM (1994) Ca-dependent facilitation of cardiac Ca current is due to Ca-calmodulin dependent protein kinase. Am J Phys 267:H982–H993. https://doi.org/10.1152/ajpheart.1994.267.3.H982

    Article  CAS  Google Scholar 

  134. Yuchi Z, Lau K, Van Petegem F (2012) Disease mutations in the ryanodine receptor central region: Crystal structures of a phosphorylation hot spot domain. Structure 20:1201–1211. https://doi.org/10.1016/j.str.2012.04.015

    Article  CAS  PubMed  Google Scholar 

  135. Zaccolo M, Pozzan T (2002) Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295:1711–1715. https://doi.org/10.1126/science.1069982

    Article  CAS  PubMed  Google Scholar 

  136. Zhang H, Makarewich CA, Kubo H, Wang W, Duran JM, Li Y, Berretta RM, Koch WJ, Chen X, Gao E, Valdivia HH, Houser SR (2012) Hyperphosphorylation of the cardiac ryanodine receptor at Serine 2808 is not involved in cardiac dysfunction after myocardial infarction. Circ Res 110:831–840. https://doi.org/10.1161/CIRCRESAHA.111.255158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhang GQ, Wei H, Lu J, Wong P, Shim W (2013) Identification and characterization of calcium sparks in cardiomyocytes derived from human induced pluripotent stem cells. PLoS One 8:e55266. https://doi.org/10.1371/journal.pone.0055266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhang X, Szeto C, Gao E, Tang M, Jin J, Fu Q, Makarewich C, Ai X, Li Y, Tang A, Wang J, Gao H, Wang F, Ge XJ, Kunapuli SP, Zhou L, Zeng C, Xiang KY, Chen X (2013) Cardiotoxic and cardioprotective features of chronic β-adrenergic signaling. Circ Res 112:498–509. https://doi.org/10.1161/CIRCRESAHA.112.273896

    Article  CAS  PubMed  Google Scholar 

  139. Zhang Y, Wang WE, Zhang X, Li Y, Chen B, Liu C, Ai X, Zhang X, Tian Y, Zhang C, Tang M, Szeto C, Hua X, Xie M, Zeng C, Wu Y, Zhou L, Zhu W, Yu D, Houser SR, Chen X (2019) Cardiomyocyte PKA ablation enhances basal contractility while eliminates cardiac β-adrenergic response without adverse effects on the heart. Circ Res 124:1760–1777. https://doi.org/10.1161/CIRCRESAHA.118.313417

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Slovak Scientific Grant Agency (VEGA 2/0011/18 to J.G. and VEGA 2/0008/20 to M.G.) and the Research & Development Operational Program funded by the ERDF (ITMS 26230120009).

Author information

Authors and Affiliations

Authors

Contributions

J.G., E.K. and M.G. wrote the manuscript. J.G. and M.G. made manuscript revision. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Marta Gaburjakova.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaburjakova, J., Krejciova, E. & Gaburjakova, M. Multisite phosphorylation of the cardiac ryanodine receptor: a random or coordinated event?. Pflugers Arch - Eur J Physiol 472, 1793–1807 (2020). https://doi.org/10.1007/s00424-020-02473-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-020-02473-3

Keywords

Navigation