Skip to main content
Log in

The Contrast Sensitivity of the Visual System in “Dry” Immersion Conditions

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

We have studied the contrast sensitivity of the visual system in various ranges of the spatial frequencies in “dry” immersion conditions that simulate the physiological effects of microgravity. The contrast sensitivity in the range of low and high spatial frequencies is indicative of the functional state of the magnocellular and parvocellular neuronal pathways that form the dorsal and ventral information flows from the occipital to the frontal lobes. The study involved ten volunteers who were exposed to “dry” immersion for 21 days. The contrast sensitivity of the visual system was recorded with a method of visocontrastometry. The Gabor elements were used as stimuli. An increase in contrast sensitivity was registered in the low spatial frequency range with specific sensitivity of the magnocellular pathway to these frequencies on the third day of immersion and 1 day after the end of the experiment, compared to the background values. The contrast sensitivity in the high spatial frequency range with specific sensitivity of the parvocellular pathway to these frequencies in the experiment remained unchanged. Thus, our findings have shown that the magnocellular neuronal pathway is involved in the processes of adaptation to extreme ambient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. F. W. Campbell and J. G. Robson, J. Physiol. 197, 551 (1968).

    Article  Google Scholar 

  2. V. D. Glezer, V. A. Ivanov, and T. A. Shcherbach, Fiziol. Zh. 59 (2), 206 (1973).

    Google Scholar 

  3. D. H. Hubel and T. N. Wiesel, J. Physiol. 195, 215 (1968).

    Article  Google Scholar 

  4. D. Hubel and T. Wiesel, J. Neurosci. 3, 1116 (1983).

    Article  Google Scholar 

  5. L. J. Croner and E. Kaplan, Vision Res. 35, 7 (1995).

    Article  Google Scholar 

  6. J. Kulikowski, in Seeing Contour and Colour, Ed. by J. Kulikowski, C. Dickinson, and I. Murray (Pergamon, Oxford, 1989).

    Google Scholar 

  7. D. Regan, Human Perception of Objects: Early Visual Processing of Spatial Form Defined by Luminance, Color, Texture, Motion, and Binocular Disparity (Sinauer, Sunderland, 2000).

    Google Scholar 

  8. W. H. Merigan and J. H. R. Maunsell, Annu. Rev. Neurosci. 16, 369 (1993).

    Article  Google Scholar 

  9. Y. J. Kulikovsky and E Robsob, Opt. Zh. 66 (9), 37 (1999).

    Google Scholar 

  10. S. De la Rosa, R. N. Choudhery, and A. Chatziastros, J. Exp. Psychol. Hum. Percept. Perform. 37, 38 (2011).

    Article  Google Scholar 

  11. D.J. Calderone, M.J. Hoptman, A. Martinez et al., Cereb. Cortex 23, 1849 (2013).

    Article  Google Scholar 

  12. M. Conci, T. Tollner, M. Leszczynski, and H. J. Muller, Neuropsychologia 49, 2456 (2011).

    Article  Google Scholar 

  13. J. F. De Souza, S. P. Dukelow, J. S. Gati, et al., J. Neurosci. 20, 5835 (2000).

    Article  Google Scholar 

  14. A. Thiele, K. R. Dobkins, and T. D. Albright, Neuron 32, 351 (2001).

    Article  Google Scholar 

  15. S. Keґi, A. Antal, G. Szekeres, et al., J. Neuropsychiatry Clin. Neurosci. 14, 190 (2002).

    Article  Google Scholar 

  16. P. D. Butler, S. M. Silverstein, and S. C. Dakin, Biol. Psychiatry 64, 40 (2008).

    Article  Google Scholar 

  17. E. Kaplan and R. Shapley, Proc. Natl. Acad. Sci. U. S. A. 83, 2755 (1986).

    Article  ADS  Google Scholar 

  18. J. H. R. Maunsell, T. A. Nealey, and D. D. DePriest, J. Neurosci. 10, 3323 (1990).

    Article  Google Scholar 

  19. J. J. Kulikowski, V. Walsh, and I. J. Murray, Limits of Vision (Macmillan, London, 1991).

    Google Scholar 

  20. L. G. Ungerleider and M. Mishkin, in Analysis of Visual Behavior, Ed. by D. J. Ingle, M. A. Goodale, and R. J. W. Mansfield (MIT Press, Cambridge, 1982), pp. 549–586.

    Google Scholar 

  21. I. I. Shoshina and Yu. E. Shelepin, Mechanisms of Global and Local Analysis of Visual Information in Scizophrenia (VVM, St. Petersburg, 2016) [in Russian].

    Google Scholar 

  22. I. Shoshina, Y. Shelepin, S. Konkina, et al., Neurosci. Behav. Physiol. 44 (2), 244 (2014).

    Article  Google Scholar 

  23. I. I. Shoshina and Yu. E. Shelepin, Neurosci. Behav. Physiol. 45 (5), 512 (2015).

    Article  Google Scholar 

  24. I. I. Shoshina, Y. E. Shelepin, E. A. Vershinina, and K. O. Novikova, Hum. Physiol. 41 (3), 251 (2015).

    Article  Google Scholar 

  25. B. P. Keane, D. Paterno, S. Kastner, and S. M. Silverstein, J. Abnormal Psychol. 125 (4), 543 (2016).

    Article  Google Scholar 

  26. S. M. Silverstein and R. Rosen, Schizophr. Res. Cog. 2 (2), 46 (2015).

    Article  Google Scholar 

  27. Z. Wang, Z. Yu, Z. Pan, et al., Front. Psychol. 9, 850 (2018).

    Article  Google Scholar 

  28. I. I. Shoshina, E. Zavyalova, and R. Sergienko, Int. J. Psychophysiol. 131, 93 (2018).

    Article  Google Scholar 

  29. F. Z. Meerson, Adaptation to Stress Situations and Physical Loads (Meditsina, Moscow, 1988) [in Russian].

    Google Scholar 

  30. S. N. Shilov, I. A. Ignatova, T. A. Muller, et al., Fundament. Issled., No. 1–6, 1275 (2015).

  31. G. Cheron, A. Leroy, E. Palmero-Soler, et al., PLoS One 9 (1), e82371 (2014).

    Article  ADS  Google Scholar 

  32. E. Tomilovskaya, T. Shigueva, D. Sayenko, et al., Front. Physiol. 10, 284 (2019).

    Article  Google Scholar 

  33. Yu. E. Shelepin, L. N. Kolersnikova, and Yu. I. Lev-kovich, Visocontrastometry (Nauka, St. Petersburg, 1985) [in Russian].

    Google Scholar 

Download references

Funding

Financial support of this study was provided by the Russian Foundation of Basic Research (grant no. 19-013-00036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Shoshina.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. The procedure was preliminarily reviewed and approved by the Biomedical Ethic Committee of the Institute of Biomedical Problems, Russian Academy of Sciences. Informed consent was obtained from every participant according to the Helsinki Declaration.

Additional information

Translated by E. Sherstyuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoshina, I.I., Sosnina, I.S., Zelenskiy, K.A. et al. The Contrast Sensitivity of the Visual System in “Dry” Immersion Conditions. BIOPHYSICS 65, 681–685 (2020). https://doi.org/10.1134/S0006350920040211

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350920040211

Navigation