Skip to main content
Log in

The Prospects of Metal Oxide Nanoradiosensitizers: The Effect of the Elemental Composition of Particles and Characteristics of Radiation Sources on Enhancement of the Adsorbed Dose

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Nanoparticles with a high atomic number are of interest as radiosensitizers for radiation therapy of cancer. A variety of nanoparticles and radiation sources makes the challenge of selecting their optimal combinations to achieve maximum irradiation efficacy relevant. In this work, we calculated the values of the dose enhancement factors of elemental compositions of metal oxide nanoparticles (Al2O3, TiO2, MnO2, Fe2O3 and Fe3O4, NiO, GeO2, ZrO2, CeO2, Gd2O3, Tm2O3, HfO2, Ta2O5, and Bi2O3), as well as GeO2 and HfO2 doped with the rare-earth elements lanthanum or ytterbium in combination with monochromatic photons (1–500 keV) and X-ray radiation corresponding to the radiation of kilovoltage X-ray therapy machines. At a nanoparticle concentration of 10 mg/mL, the maximum values of the dose enhancement factors were from 1.03 to 2.55 for monochromatic radiation and from 1.01 to 2.33 for the studied X-ray spectra. Doping GeO2 with 20% lanthanum or ytterbium led to an increase in the maximum value of dose enhancement factors by ~10%. Doping HfO2 did not lead to significant changes in the value of dose-enhancement factors. Thus, all studied elemental compositions of nanoparticles, with the exception of Al2O3 (a dose enhancement factor ~1.02), are promising for application in kilovoltage X-ray radiotherapy. At the same time, the complex dependence of dose enhancement factors on the spectral composition of X-ray radiation requires detailed studies of the impact of irradiation conditions on the magnitude of the radiomodifying effect of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. R. Baskar, K. A. Lee, R. Yeo, et al., Int. J. Med. Sci. 9 (3), 193 (2012).

    Article  Google Scholar 

  2. L. Gunderson and J. Tepper, Clinical Radiation Oncology (Elsevier, Philadelphia, 2016).

    Google Scholar 

  3. M. Baumann, M. Krause, J. Overgaard, et al., Nat. Rev. Cancer 16 (4), 234 (2016).

    Article  Google Scholar 

  4. H. H. W. Chen and M. T. Kuo, Oncotarget 8 (37), 62742 (2017).

    Article  Google Scholar 

  5. K. Stępień, R. P. Ostrowski, and E. Matyja, Med. Oncol. 33 (9), 101 (2016).

    Article  Google Scholar 

  6. P. Kaur, M. D. Hurwitz, S. Krishnan, et al., Cancers (Basel) 3 (4), 3799 (2011).

    Article  Google Scholar 

  7. . C. Peeken, P. Vaupel, and S. E. Combs, Front. Oncol. 7, 132 (2017)

    Article  Google Scholar 

  8. C. K. Nair, D. K. Parida, and T. Nomura, J. Radiat. Res. 42 (1), 21 (2001).

    Article  ADS  Google Scholar 

  9. P. Wardman, Clin. Oncol. (R. Coll. Radiol.) 19 (6), 397 (2007).

    Article  Google Scholar 

  10. D. Citrin, A. P. Cotrim, F. Hyodo, et al., Oncologist 15 (4), 360 (2010).

    Article  Google Scholar 

  11. R. M. Johnke, J. A. Sattler, and R. R. Allison, Future Oncol. 10 (15), 2345 (2014).

    Article  Google Scholar 

  12. J. Linam and L. X. Yang, Anticancer Res. 35 (5), 2479 (2015).

    Google Scholar 

  13. M. Z. Kamran, A. Ranjan, N. Kaur, et al., Med. Res. Rev. 36 (3), 461 (2016).

    Article  Google Scholar 

  14. H. Wang, X. Mu, H. He, et al., Trends Pharmacol. Sci. 39 (1), 24 (2018).

    Article  Google Scholar 

  15. Y. Mi, Z. Shao, J. Vang, et al., Cancer Nanotechnol. 7 (1), 11 (2016).

    Article  Google Scholar 

  16. L. A. Kunz-Schughart, A. Dubrovska, C. Peitzsch, et al., Biomaterials 120, 155 (2017).

    Article  Google Scholar 

  17. S. Goel, D. Ni, and W. Cai, ACS Nano 11 (6), 5233 (2017).

    Article  Google Scholar 

  18. Retif, S. Pinel, M. Toussaint, et al., Theranostics 5 (9), 1030 (2015).

    Article  Google Scholar 

  19. A. Subiel, R. Ashmore, and G. Schettino, Theranostics 6 (10), 1651 (2016).

    Article  Google Scholar 

  20. S. Her, D. A. Jaffray, and C. Allen, Adv. Drug Deliv. Rev. 109, 84 (2017).

    Article  Google Scholar 

  21. S. Rosa, C. Connolly, G. Schettino, et al., Cancer Nanotechnol. 8 (1), 2 (2017).

    Article  Google Scholar 

  22. L. Cui, S. Her, G. R. Borst, et al., Radiother. Oncol. 124 (3), 344 (2017).

    Article  Google Scholar 

  23. Y. Liu, P. Zhang, F. Li, et al., Theranostics 8 (7), 1824 (2018).

    Article  Google Scholar 

  24. W. N. Rahman, N. Bishara, T. Ackerly, et al., Nanomedicine 5 (2), 136 (2009).

    Article  Google Scholar 

  25. D. B. Chithrani, S. Jelveh, F. Jalali, et al., Radiat. Res. 173 (6), 719 (2010).

    Article  ADS  Google Scholar 

  26. S. Jain, J. A. Coulter, A. R. Hounsell, et al., Int. J. Radiat. Oncol. Biol. Phys. 79 (2), 531 (2011).

    Article  Google Scholar 

  27. N. P. Praetorius and T. K. Mandal, Recent Pat. Drug Deliv. Formul. 1 (1), 37 (2007).

    Article  Google Scholar 

  28. J. F. Hainfeld, D. N. Slatkin, and H. M. Smilowitz, Phys. Med. Biol. 49 (18), N309 (2004).

    Article  Google Scholar 

  29. X. Y. Su, P. D. Liu, H. Wu, et al., Cancer Biol. Med. 11 (2), 86 (2014).

    Google Scholar 

  30. D. R. Cooper, D. Bekah, and J. L. Nadeau, Front. Chem. 2, 86 (2014).

    Article  ADS  Google Scholar 

  31. S. Andreescu, M. Ornatska, J. S. Erlichman, et al., in Fine Particles in Medicine and Pharmacy, Ed. by E. Matijević (Springer, Boston, 2012), pp. 57–100.

    Google Scholar 

  32. A. P. Ramos, M. A. E. Cruz, C. B. Tovani, et al., Biophys. Rev. 9 (2), 79 (2017).

    Article  Google Scholar 

  33. C. Mirjolet, A. L. Papa, G. Crehange, et al., Radiother. Oncol. 108 (1), 136 (2013).

    Article  Google Scholar 

  34. S. Khoei, S. R. Mahdavi, H. Fakhimikabir, et al., Int. J. Radiat. Biol. 90 (5), 351 (2014).

    Article  Google Scholar 

  35. K. Khoshgard, P. Kiani, A. Haghparast, et al., Int. J. Radiat. Biol. 93 (8), 757 (2017).

    Article  Google Scholar 

  36. E. Engels, M. Westlake, N. Li, et al., Biomed. Phys. Eng. Express 4 (4), 044001 (2018).

    Article  Google Scholar 

  37. A. Montazeri, Z. Zal, A. Ghasemi, et al., Pharm. Nanotechnol. 6 (2), 111 (2018).

    Article  Google Scholar 

  38. L. Maggiorella, G. Barouch, C. Devaux, et al., Future Oncol. 8 (9), 1167 (2012).

    Article  Google Scholar 

  39. J. Marill, N. M. Anesary, P. Zhang, et al., Radiat. Oncol. 9, 150 (2014).

    Article  Google Scholar 

  40. R. Brown, S. Corde, S. Oktaria, et al., Biomed. Phys. Eng. Express 3 (1), 015018 (2017).

    Article  Google Scholar 

  41. C. Stewart, K. Konstantinov, S. McKinnon, et al., Phys. Med. 32 (11), 1444 (2016).

    Article  Google Scholar 

  42. E. Brauer-Krisch, J. F. Adam, E. Alagoz, et al., Phys. Med. 31 (6), 568 (2015).

    Article  Google Scholar 

  43. J. C. Roeske, L. Nunez, M. Hoggarth, et al., Technol. Cancer Res. Treat. 6 (5), 395 (2007).

    Article  Google Scholar 

  44. M. Hossain and M. Su, J. Phys. Chem. C Nanomater. Interfaces 116 (43), 23047 (2012).

    Google Scholar 

  45. S. J. McMahon, H. Paganetti, and K. M. Prise, Nanoscale 8 (1), 581 (2016).

    Article  ADS  Google Scholar 

  46. V. N. Morozov, A. V. Belousov, G. A. Krusanov, et al., Optics Spectrosc. 125 (1), 104 (2018).

    Article  ADS  Google Scholar 

  47. R. Nowotny, XMuDat: Photon Attenuation Data on PC (1998). https://www-nds.iaea.org/publications/iaea-nds/iaea-nds-0195.htm.

  48. J. H. Hubbell and S. M. Seltzer, Tables of X-ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients. http://www.nist.gov/pml/data/xraycoef (1996).

  49. Geant4: A Simulation Toolkit. https://geant4.web.cern.ch.

  50. A. V. Belousov, U. A. Bliznyuk, P. Y. Borschegovskaya, et al., Moscow. Univ. Phys. Bull. 69 (2), 157 (2014).

    Article  ADS  Google Scholar 

  51. E. Lechtman, N. Chattopadhyay, Z. Cai, et al., Phys. Med. Biol. 56 (15), 4631 (2011).

    Article  Google Scholar 

  52. B. Koger and C. Kirkby, Phys. Med. Biol. 62 (21), 8455 (2017).

    Article  Google Scholar 

  53. N. Ma, F. G. Wu, X. Zhang, et al., ACS Appl. Mater. Interfaces 9 (15), 13037 (2017).

    Article  Google Scholar 

  54. A. V. Belousov, V. N. Morozov, G. A. Krusanov, et al., Dokl. Phys. 63 (3), 96 (2018).

    Article  ADS  Google Scholar 

  55. A. V. Belousov, V. N. Morozov, G. A. Krusanov, et al., Biomed. Phys. Eng. Express 4 (4), 045023 (2018).

    Article  Google Scholar 

  56. A. V. Belousov, V. N. Morozov, G. A. Krusanov, et al., Biophysics 64 (1), 23 (2019).

    Article  Google Scholar 

  57. F. M. Khan and G. P. Gibbons, The Physics of Radiation Therapy (Wolters Kluwer, Philadelphia, 2014).

    Google Scholar 

  58. A. Lauria, I. Villa, M. Fasoli, et al., ACS Nano 7 (8), 7041 (2013).

    Article  Google Scholar 

  59. A. D. Furasova, A. F. Fakhardo, V. A. Milichko, et al., Colloids Surf. B. Biointerfaces 1, 154 (2017).

    Google Scholar 

  60. G. Singh, B. H. McDonagh, S. Hak, et al., J. Mater. Chem. B 5, 418 (2017).

    Article  Google Scholar 

  61. I. Villa, C. Villa, A. Monguzzi, et al., Nanoscale 10 (17), 7933 (2018).

    Article  Google Scholar 

  62. H. Deng, F. Chen, C. Yang, et al., Nanotechnology 29 (41), 415601 (2018).

    Article  ADS  Google Scholar 

Download references

Funding

This work was financially supported by the Program for the Nuclear Medicine Development of the JSC Science and Innovations of the State Corporation ROSATOM (project AAAA-A19-119122590084-4) and the Russian Foundation for Basic Research (grant no. 18-29-11078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Morozov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by G. Levit

Abbreviations: DEF, dose enhancement factor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, V.N., Belousov, A.V., Zverev, V.I. et al. The Prospects of Metal Oxide Nanoradiosensitizers: The Effect of the Elemental Composition of Particles and Characteristics of Radiation Sources on Enhancement of the Adsorbed Dose. BIOPHYSICS 65, 533–540 (2020). https://doi.org/10.1134/S0006350920040107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350920040107

Navigation