Skip to main content
Log in

A Chain Reaction of Adrenaline Autoxidation is a Model of Quinoid Oxidation of Catecholamines

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

This review is focused on literature data and our own research of the nontrivial quinoid pathway for the oxidation of adrenaline. All catecholamines can be oxidized similarly with formation of corresponding aminochromes. This process is simulated in vitro in an alkaline medium and is known as the adrenaline autoxidation chain reaction, whose products are adrenochrome and radical compounds, superoxide anions (\({\text{O}}_{2}^{{ - {\kern 1pt} \centerdot }}\)), and other. This reaction was previously used to determine the activity of superoxide dismutase as a model of superoxide generation. We have proposed various new methodical approaches that allow the determination of the enzyme activity and reveal the anti/prooxidant properties of various compounds and materials. This pathway of conversion of one of the catecholamines (dopamine) is currently described as a “preclinical model of Parkinson’s disease.” In this regard, we have proposed the reaction of adrenaline autoxidation to be used in search for substances that can inhibit the process of quinoid oxidation, that is, to identify potential neuroprotective agents. Experimental and theoretical studies of this reaction expand the understanding of the mechanisms of free radical processes that occur in the body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. V. V. Menshikov and T. D. Bolshakova, in Adrenaline and Noradrenaline (Nauka, Moscow, 1964), p. 284 [in Russian].

    Google Scholar 

  2. S. Baez, J. Segura-Aguilar, M. Widersten, et al., J. Biochem. 324, 25 (1997).

    Article  Google Scholar 

  3. M. P. Rigobello, G. Scutari, R. Boscolo, and A. Bindoli, Nitric Oxide 5, 39 (2001).

    Article  Google Scholar 

  4. Y. Fu, L. Buryanovskyy, and Z. Zhang, J. Biol. Chem. 283, 23829 (2008).

    Article  Google Scholar 

  5. V. S. Fluxa, D. Wahler, and J. L. Reymond, Nat. Protoc. 3, 1270 (2008).

    Article  Google Scholar 

  6. C. Foppoli, R. Coccia., C. Cini, and M. A. Rosei, Biochim. Biophys. Acta 1334, 200 (1997).

    Article  Google Scholar 

  7. A. Bindoli, M. P. Rigobello, and L. Galzigna, Toxicol. Lett. 48, 3 (1989).

    Article  Google Scholar 

  8. F. Marques, R. O. Duarte, J. J. Moura, and M. P. Bicho, Biopl. Signals 5 (5), 275 (1996).

    Article  Google Scholar 

  9. A. Bindoli, M. P. Rigobello, and D. J. Deeble, Free Radic. Biol. Med. 13, 391 (1992).

    Article  Google Scholar 

  10. K. Polewski, Biochim. Biophys. Acta 1523, 56 (2000).

    Article  Google Scholar 

  11. T. V. Sirota, Biochemistry (Moscow) Suppl. Ser. B: Biomed. Chem. 6 (3), 254 (2012).

    Google Scholar 

  12. V. G. Kolpakov, Zh. Nevropatol. Psikhiatrii im. S. S. Korsakova 74, 1254 (1974).

    Google Scholar 

  13. S. Baez and J. Segura-Aguilar, Biochem. Mol. Med., 56, 37 (1995).

    Article  Google Scholar 

  14. A. F. Rump, J. Schierholz, R. Rosen, et al., Arzneimittelforschung 51, 964 (2001).

    Google Scholar 

  15. V. M. Costa, R. Silva, L. M. Ferreira, et al., Chem. Res. Toxicol. 20, 1183 (2007).

    Article  Google Scholar 

  16. J. Smythies, A. De Iuliis, L. Zanatta, and L. Galzigna, Neurotox. Res. 4 (1), 77 (2002).

    Article  Google Scholar 

  17. J. Smythies, Antioxid. Redox. Signal. 2 (3), 575 (2000).

    Article  Google Scholar 

  18. P. Munoz, S. Huenchuguala, I. Paris, and J. Segura-Aguilar, Parkinsons Dis. 2012, 920953 (2012). https://doi.org/10.1155/2012/920953

  19. M. L. Genova, N. M. Abd-Elsalam, S. M. el-Mahdy, et al., Arch. Biochem. Biophys. 447 (2), 167 (2006).

    Article  Google Scholar 

  20. S. O. Tapbergenov, Vopr. Med. Khim. 28, 52 (1982).

    Google Scholar 

  21. I. S. Severina, N. V. Pyatakova, A. Yu. Shchegolev, and T. A. Sidorova, Biomed. Khim. 54, 679 (2008).

    Google Scholar 

  22. A. M. Utevskiy and S. O. Tapbergenov, Ukr. Biokhim. Zh. 54, 307 (1982

    Google Scholar 

  23. K. Jomova and M. Valko, Toxicology 283 (2–3), 65 (2011).

  24. C. Beauchamp and I. Fridovich, Anal. Biochem. 44 (1), 276 (1971).

    Article  Google Scholar 

  25. M. Nishikimi, N. A. Rao, and K. Yagi, Biochem. Biophys. Res. Commun. 46 (2), 849 (1972).

    Article  Google Scholar 

  26. H. P. Misra and I. Fridovich, J. Biol. Chem., 247, 3170 (1972).

    Google Scholar 

  27. T. V. Sirota, Vopr. Med. Khim. 45, 263 (1999).

    Google Scholar 

  28. T. V. Sirota, RF Patent No. 2 144 674 (2000).

  29. T. V. Sirota, N. V. Lange, N. I. Kosjakova, et al., Curr. Topics Biophys. 24, 185 (2000).

    Google Scholar 

  30. S. Green, A. Mazur, and E. Shorr, J. Biol. Chem., 220, 237 (1956).

    Google Scholar 

  31. T. V. Sirota, A. I. Miroshnikov, and K. N. Novikov, Biophysics (Moscow) 55 (6), 911 (2010).

    Article  Google Scholar 

  32. A. B. Shcherbakov, V. K. Ivanov, T. V. Sirota, and Yu. D. Tretyakov, Dokl. Akad. Nauk 437 (2), 197 (2011).

    Google Scholar 

  33. T. V. Sirota, M. V. Zakharchenko, and M. N. Kondrashova, Biochemistry (Moscow) Suppl. Ser. B: Biomed. Chem. 7 (1), 79 (2013). 60 (1), 63 (2014).

  34. K. O. Semen, G. J. M. den Hartog, D. V. Kaminsky, et al., Nat. Products Chem. Res. 2, 122 (2013). https://doi.org/10.4172/2329-6836.1000122

    Article  Google Scholar 

  35. O. P. Yelisyeyeva, K. O. Semen, G. V. Ostrovska, et al., Food Chem. 147, 152 (2014).

    Article  Google Scholar 

  36. T. V. Sirota, Bull. Exp. Biol. Med. 149 (4), 412 (2010).

    Article  Google Scholar 

  37. T. V. Sirota, N. E. Lyamina, and L. I. Weisfeld, Biophysics (Moscow) 62 (5), 691 (2017).

    Article  Google Scholar 

  38. T. V. Sirota, Biochemistry (Moscow) Suppl. Ser. B: Biomed. Chem. 8 (4), 323 (2014).

    Google Scholar 

  39. T. V. Sirota, Biomed. Khim. 62 (6), 650 (2016).

    Article  Google Scholar 

  40. T. V. Sirota, Biomed. Khim. 61 (1), 115 (2015).

    Article  Google Scholar 

  41. http://www.dpva.info/Guide/GuidePhysics/Solvability/SolvabilityOfSomeGases.

  42. 42. http://www.o8ode.ru/article/learn/ugaz.htm.

  43. http://www.o8ode.ru/article/answer/voda_bez_vozduha_gazov.htm.

  44. C. Karunakaran, H. Zhang, J. Joseph, et al., Chem. Res. Toxicol. 18 (3), 494 (2005).

    Article  Google Scholar 

  45. D. C. Ramirez, S. E. Gomez Mejiba, and R. P. Mason, Free Radic. Biol. Med. 38, 201 (2005).

    Article  Google Scholar 

  46. S. P. Goss, R. J. Singh, and B. Kalyanaraman, Biol. Chem. 274, 28233 (1999).

    Article  Google Scholar 

  47. D. B. Medinas, G. Cerchiaro, D. F. Trindade, and O. Augusto, IUBMB Life 59, 255 (2007).

    Article  Google Scholar 

  48. M. G. Bonini, S. A. Gabel, K. Ranguelova, et al., J. Biol. Chem. 284, 14618 (2009).

    Article  Google Scholar 

  49. D. B. Medinas, J. C. Toledo, Jr., G. Cerchiaro, et al., Chem. Res. Toxicol. 22 (4), 639 (2009).

    Article  Google Scholar 

  50. V. L. Voeikov, N. D. Vilenskaya, Do Mihn Ha, et al., Zh. Fiz. Khim. 86, 1 (2012).

    Google Scholar 

  51. E. E. Dubinina, in Products of Oxygen Metabolism in the Functional Activity of Cells (St. Petersburg, 2006), p. 111 [in Russian].

    Google Scholar 

  52. C. C. Santos, F. M. Araujo, R. S. Ferreira, et al., Toxicol. in Vitro 42, 54 (2017). https://doi.org/10.1016/j.tiv.2017.04.004

    Article  Google Scholar 

  53. J. Segura-Aguilarand and S. Huenchuguala, Front Neurosci. 12, 106 (2018). https://doi.org/10.3389/fnins.2018.00106

    Article  Google Scholar 

  54. J. Segura-Aguilar, I. Paris, P. Munoz, et al., Neurochem, 129 (6), 898 (2014). https://doi.org/10.1111/jnc.12686

    Article  Google Scholar 

  55. A. Herrera-Soto, G. Diaz-Veliz, S. Mora, et al., Neurotox. Res. 32 (1), 134 (2017). https://doi.org/10.1007/s12640-017-9719-8

    Article  Google Scholar 

  56. S. Huenchuguala, P. Munoz, R. Graumann, et al., Neurotoxicology 55, 10 (2016). https://doi.org/10.1016/j.neuro.2016.04.014

    Article  Google Scholar 

  57. T. V. Sirota, Biomed. Khim. 65 (4), 316 (2019).

    Article  Google Scholar 

  58. T. V. Sirota, Biophysics (Moscow) 61 (1), 17 (2016).

    Article  Google Scholar 

  59. A. V. Lebedev, M. V. Ivanova, A. A. Timoshin, and E. K. Ruuge, Biomed. Khim. 54 (6), 687 (2008).

    Google Scholar 

  60. J. Smythies, Neurotox. Res. 4 (2), 147 (2002).

    Article  Google Scholar 

  61. G. S. Behonick, M. J. Novak, E. W. Nealley, and S. L. Baskin, J. Appl. Toxicol. 21 (1) 15 (2001).

    Article  Google Scholar 

  62. T. V. Sirota, V. I. Novoselov, V. G. Safronova, et al., IEEE Trans. Plasma Sci. 34 (4), 1351 (2006).

    Article  ADS  Google Scholar 

  63. A. I. Gritsuk, T. V. Sirota, L. V. Dravitsa, and E. A. Craddock, Biomed. Khim. 52 (6), 601 (2006).

    Google Scholar 

  64. T. V. Sirota, V. G. Safronova, A. G. Amelina, et al., Biophysics (Moscow) 53 (5), 457 (2008).

    Article  Google Scholar 

  65. V. I. Kulinsky and L. S. Kolesnichenko, Usp. Biol. Khim. 31, 157 (1990).

    Google Scholar 

  66. N. K. Zenkov, V. Z. Lankin, and E. B. Menshchikova, in Oxidative Stress (Nauka/Interperiodica, Moscow, 2001), p. 154 [in Russian].

    Google Scholar 

  67. E. B. Menshchikova, V. Z. Lankin, and N. K. Zenkov, in Oxidative Stress: Prooxidants and Antioxidants (Slovo, Moscow, 2006), p. 394 [in Russian].

  68. G. F. Rushworth and I. L. Megson, Pharmacol. Ther. 141 (2), 150 (2014). https://doi.org/10.1016/j.pharmthera.2013.09.006

    Article  Google Scholar 

  69. M. A. Martinez-Banaclocha, Med. Hypotheses 79 (1), 8 (2012).

    Article  Google Scholar 

  70. D. S. Goldstein, Y. Jinsmaa, P. Sullivan, and Y. Sharabi, Neurochem. Res. 42 (11), 3289 (2017). https://doi.org/10.1007/s11064-017-2371-0

    Article  Google Scholar 

  71. L. D. Coles, P. J. Tuite, G. Oz, and U. R. Mishra, J. Clin. Pharmacol. 58 (2), 158 (2018). https://doi.org/10.1002/jcph.1008

    Article  Google Scholar 

  72. https://natureweight.ru/glutation.

  73. Y. Izumi, Yakugaku Zasshi 133 (9), 983 (2013).

    Article  Google Scholar 

  74. N. K. Zenkov, E. B. Menshchikova, and V. O. Tkachev, Biochemistry (Moscow) 78 (1), 19 (2013).

    Article  Google Scholar 

  75. J. A. Lee, H. J. Son, J. W. Choi, et al., Neurochem. Int. 112, 96 (2018). .https://doi.org/10.1016/j.neuint.2017.11.006

    Article  Google Scholar 

  76. F. I. Tarazi, Z. T. Sahli, M. Wolny, and S. A. Mousa, Pharmacol. Ther. 144 (2), 123 (2014). https://doi.org/10.1016/j.pharmthera.2014.05.010

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks the chief specialist N.E. Lyamina for technical assistance in conducting experiments and preparing publications.

Funding

This work was mainly carried out within the framework of budget financing of ITEB RAS on topic 04 of the direction 63.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Sirota.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

COMPLIANCE WITH ETHICAL STANDARDS

This paper does not describe any research using humans and animals as objects.

Additional information

Translated by E. Puchkov

Abbreviations: ROS, reactive oxygen species; PD, Parkinson’s disease; SOD, superoxide dismutase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirota, T.V. A Chain Reaction of Adrenaline Autoxidation is a Model of Quinoid Oxidation of Catecholamines. BIOPHYSICS 65, 548–556 (2020). https://doi.org/10.1134/S0006350920040223

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350920040223

Navigation