Skip to main content
Log in

Radicals in Cellular Structures

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The involvement of natural radicals in single-electron processes of cell activity is considered. It was shown that coenzymes that have intermediate free radical quinoid and semichinoid forms can interact with carotenoids to form complexes with a charge transfer with an absorption band of 1030 nm. Moreover, the complex can perform an active light-harvesting function during photosynthesis up to 1100 nm, with the energy transfer from chlorophylls a and b to the complex. Studies of the sorption of the alcoholdehydrogenase–nicotinamide adenine dinucleotide enzyme–cofactor system on a hydrophobic electrically conductive carrier showed that the activity of the enzyme–cofactor system is at its maximum for sequential sorption of the coenzyme and then the apoenzyme. The orientation of the biocatalytic system on the immobilization matrix is of great importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. N. P. Chesnokova, E. V. Ponukalina, and M. N. Bizenkova, Usp. Sovrem. Estestvozn., No. 7, 29 (2006).

  2. Yu. A. Vladimirov, Soros. Obraz. Zh., Ser. Biol. 6 (12), 14 (2000).

    Google Scholar 

  3. N. T. Berberova, Soros. Obraz. Zh., Ser. Khim. 6 (5), 39 (2000).

    Google Scholar 

  4. A. Solov’ev, Farmatsevt. Prakt., No. 12 (2016). http://fp.com.ua/articles/svobodnyie-radikalyi-razrushiteli-ili-zashhitniki-organizma.

  5. www.enzyme.chem.msu.ru/eduproc/prac/task9/part09. doc.

  6. E. V. Petrova, Candidate’s Dissertatin in Chemistry (Tomsk, 2015).

    Google Scholar 

  7. J. T. McFarland and Yu-H. Chu, Biochemistry 14 (6), 1140 (1975).

    Article  Google Scholar 

  8. U. M. Lutstarf, P. M. Shurch, and J. P. Wartburg, Eur. J. Biochem. 17 (3), 497 (1970).

    Article  Google Scholar 

  9. P. P. Gladyshev, M. I. Gryaev, and I. G. Spielberg, Ml. Biol. (Moscow) 16 (5), 943 (1982).

  10. E. Lundanes and T. Greibrokk, J. Chromatogr. 149, 241 (1978).

  11. The Enzymes (Academic, New York, 1975), Vol. 11, p. 191.

  12. M. J. Adams, G. C. Ford, A. Liljas, and M. G. Rossman, Biochem. Biophys. Res. Commun. 53 (1), 46 (1973).

    Article  Google Scholar 

  13. M. G. Rossmann, D. Moras, and K. W. Olsen, Nature 250 (5463), 194 (1974).

    Article  ADS  Google Scholar 

  14. I. Ohlsson, B. Nordstrom, and C.-I. Branden, J. Mol. Biol. 89 (2), 339 (1974).

    Article  Google Scholar 

  15. H. Klaui, in Chemistry and Biochemistry (Pergamon Press, Oxford, (1982), pp. 309–317.

    Google Scholar 

  16. J. A. Olson and N. I. Krinsky, FASEB J. 9 (15), 1547 (1995).

    Article  Google Scholar 

  17. E. Hernandez-Marin, A. Barbosa, and A. Martinez, Molecules 17, 1039 (2012).

    Article  Google Scholar 

  18. R. Edge and G. Truscott, in Carotenoids: Physical, Chemical, and Biological Functions and Properties (Kluwer, 2010), pp. 283–307.

    Google Scholar 

  19. F. Ramel, S. Birtic, and S. Cuine, Plant Physiol. 158, 1267 (2012).

    Article  Google Scholar 

  20. F. Bouvier, J.-C. Isner, O. Dogbo, and B. Camara, Trends Plant Sci. 10 (4), 187 (2005).

    Article  Google Scholar 

  21. N. E. Polyakov and T. V. Leshina, Usp. Khim. 75, 1175 (2006).

    Article  Google Scholar 

  22. N. E. Polyakov, A. L. Focsan, K. Michael, et al., J. Phys. Chem. B 23, 16968 (2010).

    Article  Google Scholar 

  23. H.Volkhard, Fluorescence Resonance Energy Transfer. Principles of Computational Cell Biology (Wiley-VCH, Weinheim, 2008).

    Google Scholar 

  24. N. D. Alekhina, Yu. V. Balnokin, V. F. Gavrilenko, et al., Plant Physiology (Academia, Moscow, 2005) [in Russian].

  25. D. C. Harris, in Applications of Spectrophotometry. Quantitative Chemical Analysis (Freeman, New York, 2010).

    Google Scholar 

  26. G. N. Smolikova and S. S. Medvedev, Russ. J. Plant Physiol. 62 (1), 1 (2015).

    Article  Google Scholar 

  27. http://fbm.msu.ru/education/lectures/biophys/pdf/05.

  28. D. Kuciauskas, P. A. Liddell, A. L. Moore, et al., J. Am. Chem. Soc. 120, 10880 (1998).

    Article  Google Scholar 

  29. A. Sieckmann, W. Lubitz, and D. Stehlic, Chem. Phys. 194, 349 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Shapovalov.

Ethics declarations

The authors declare no conflicts of interest. This work does not contain a description of any research using humans and animals as objects.

Additional information

Translated by M. Batrukova

Abbreviations: ADH, alcohol dehydrogenase, LDH, lactate dehydrogenase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shapovalov, Y.A., Gladyshev, P.P., Tuleukhanov, S.T. et al. Radicals in Cellular Structures. BIOPHYSICS 65, 587–598 (2020). https://doi.org/10.1134/S000635092004020X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000635092004020X

Keywords:

Navigation