Skip to main content
Log in

The Effect of the Composition of a Liposomal Nanocomplex on the Antioxidant Activity of Murine Blood Plasma and Lipids of the Liver and Brain

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Much attention is given to research and development of efficient systems for the delivery of essential omega-3-polyunsaturated fatty acids and other nutraceuticals to the human body with food. Nanocomplexes, which are based on soybean phosphatidylcholine liposomes with nutraceuticals included, are among the efficient delivery systems. The prolonged use of these nanocomplexes may affect the antioxidant status in various organs and tissues. In this work, thermo-initiated chemiluminescence was used to study changes in the antioxidant activity of the blood plasma, liver, and brain lipids in mice divided into six groups depending on the composition of liposomal nanocomplexes introduced into drinks substituted for water in a long-term (3 month) diet. The components of six types of liposomal nanocomplexes, except for phosphatidylcholine, in different combinations were clove essential oil, fish oil, and sodium caseinate. The results of the study showed that nanocomplexes containing liposomes made of phosphatidylcholine with the addition of fish oil and clove essential oil and encapsulated in milk protein (sodium caseinate) proved to be the most effective in increasing the antioxidant activity of the blood plasma and brain lipids in mice compared to the control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. E. B. Burlakova, A. V. Alesenko, E. M. Molochkina, et al., Bioantioxidants in Radiation Damage and Malignant Growth (Nauka, Moscow, 1975).

    Google Scholar 

  2. E. B. Burlakova and N. P. Palmina, Vopr. Onkol. 36 (10), 1155 (1990).

    Google Scholar 

  3. E. B. Burlakova, Usp. Khim. 44 (10), 1871 (1975).

    Article  Google Scholar 

  4. E. B. Burlakova, G. F. Ivanenko, and L. N. Shishkina, Izv. Akad. Nauk SSSR, Ser. Biol., No. 4, 588 (1985).

  5. I. Popov, G. Lewin, G. Matthes, et al., Zh. Klin. Med. 43, 1663 (1988).

    Google Scholar 

  6. I. Popov, M. Popov, and G. Lewin, in Free Radicals and Oxidative Stress: Chemistry, Biochemistry and Pathophysiological Implications, Ed. by D. Galaris (Medimond, Ioannina, 2003), pp. 219–223.

    Google Scholar 

  7. I. N. Popov and G. Lewin, Biophysics (Moscow) 58 (5), 669 (2013).

    Article  Google Scholar 

  8. E. B. Burlakova and N. G. Khrapova, Usp. Khim. 54 (9), 907 (1985).

    Article  Google Scholar 

  9. E. B. Burlakova, S. A. Krashakov, and N. G. Khrapova, Biol. Membrany 15 (2), 161 (1998).

    Google Scholar 

  10. S. Dhavamani, Y. P. C. Rao, and B. R. Lokesh, Food Chem. 164, 551 (2014).

    Article  Google Scholar 

  11. R. K. Saini and Y.-S. Keum, Life Sci. 203, 255 (2018).

    Article  Google Scholar 

  12. N. R. Fuentesa, E. Kima, Y.-Y. Fana, and R. S. Chapkina, Mol. Aspects Med. 64, 79 (2018).

    Article  Google Scholar 

  13. R. J. T. Mocking, J. Assies, H. G. Ruhe, and A. H. Schene, J. Inherited Metab. Dis. 41, 597 (2018).

    Article  Google Scholar 

  14. M. Simonetto, M. Infante, R. L. Sacco, et al., Nutrients 11, 2279 (2019).

    Article  Google Scholar 

  15. G. C. Candela, L. L. M. Bermejo, and K. V. Loria, Nutric. Hospital 26 (2), 323 (2011).

    Google Scholar 

  16. M. G. Semenova, A. S. Antipova, N. P. Palmina, et al., Khim. Fiz. 38 (12), 38 (2019)

    Google Scholar 

  17. M. G. Semenova, A. S. Antipova, D. V. Zelikina, et al., Food Res. Int. 88, 70 (2016).

    Article  Google Scholar 

  18. R. S. Jope, D. J. Jenden, C. S. Subramanian, et al., Biochem. Pharmocol. 33 (5), 793 (1984).

    Article  Google Scholar 

  19. T. A. Misharina, L. D. Fatkullina, E. S. Alinkina, et al., Appl. Biochem. Microbiol. 50 (1), 88 (2014).

    Article  Google Scholar 

  20. K. J. Valentini, C. A. Pickens, J. A. Wiesinger, and J. I. Fenton, Int. J. Food Sci. Nutr. 69 (6), 705 (2018).

    Article  Google Scholar 

  21. A. Balcerezyk, A. Gajewska, E. Macierzynska-Piotrowska, et al., Molecules 19, 14794 (2014).

    Article  Google Scholar 

  22. S. S. Teh, S. H. Mah, S. W. Gouk, et al., J. Food Nutr. Res. 6 (1), 39 (2018).

    Article  Google Scholar 

  23. T. G. Blaigh and W. J. Dyer, Can. J. Biochem. Physiol. 37, 911 (1959).

    Article  Google Scholar 

  24. M. Kates, Techniques of Lipidology: Isolation, Analysis, and Identification of Lipids (North Holland, 1971; Mir, Moscow, 1975).

  25. http://www.minilum.de.

  26. I. Popov and G. Lewin, LABO 11, 8 (1997).

    Google Scholar 

  27. I. Popov and G. Lewin, Luminescence 20, 321 (2005).

    Article  Google Scholar 

  28. I. Popov and G. Lewin, in Handbook of Chemiluminescent Methods in Oxidative Stress Assessment, Ed. by I. Popov and G. Lewin (Transworld Research Network, Kerala, 2008), pp. 361–391.

    Google Scholar 

  29. N. N. Sazhina, I. N. Popov, and V. N. Titov, Klin. Lab. Diagn. 63 (1), 16 (2018).

    Google Scholar 

  30. M. M. Sozarukova, A. M. Polimova, E. V. Proskurnina, and Yu. A. Vladimirov, Biophysics (Moscow) 61 (2), 284 (2016).

    Article  Google Scholar 

  31. Yu. O. Teselkin, I. V. Babenkova, and A. N. Osipov, Biophysics (Moscow) 64 (5), 708 (2019).

    Article  Google Scholar 

  32. M. L. Sagrista, A. E. Garcia, M. A. De Madariaga, and M. Mora, Free Radic. Res. 36 (3), 329 (2002).

    Article  Google Scholar 

  33. E. A. Mengele, D. A. Krugovov, and O. T. Kasaikina, Izv. Akad. Nauk, Ser. Khim. 4 (1), 1 (2015).

    Google Scholar 

  34. Yu. A. Vladimirov and E. V. Proskurnina, Usp. Biol. Khim. 49, 341 (2009).

    Google Scholar 

  35. Yu. A. Vladimirov, Soros. Obraz. Zh. 7 (1), 16 (2001).

    Google Scholar 

  36. R. B. Hebbel and J. Lab. Clin. Med. 107, 401 (1986).

    Google Scholar 

  37. G. Lewin and I. Popov, Med. Hypoth. 42, 269 (1994).

    Article  Google Scholar 

  38. E. B. Burlakova, E. M. Molochkina, N. P. Palmina, and L. V. Slepukhina, Vopr. Med. Khim. 22 (4), 541 (1976).

    Google Scholar 

  39. N. P. Palmina, L. K. Obukhova, and T. V. Bunto, Izv. Akad. Nauk SSSR, Ser. Biol. 2, 290 (1979).

    Google Scholar 

  40. E. B. Burlakova, N. M. Dzyuba, and N. P. Palmina, Biofizika 1 (5), 766 (1965).

    Google Scholar 

  41. T. Atsumi, S. Fujisawa, and K. Tonosaki, Toxicol. In Vitro 19,1025 (2005).

    Article  Google Scholar 

  42. D. P. Bezerra, G. C. G. Militao, M. Castro de Morais and D. Pergentino de Sousa, Nutrients 9, 1367 (2017).

    Article  Google Scholar 

  43. N. N. Sazhina, A. S. Antipova, M. G. Semenova, and N. P. Palmina, Russ. J. Bioorg. Chem. 45 (1), 34 (2019).

    Article  Google Scholar 

  44. R. Rodrigo, J. C. Prieto, and R. Castillo, Clin. Sci. 124, 1 (2013).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Dr. I.N. Popov (Research Institute for Antioxidant Therapy, Berlin, Germany) for the scientific and technical support of this work, carried out within the framework of the cooperation agreement between the IBP RAS and the Research Institute of AT, and for critical reading of the manuscript. We also thank Oxidaq UG Ltd. (Berlin, Germany) for providing us with the Minilum® device and the required reagents.

Funding

This study was not sponsored.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Sazhina.

Ethics declarations

CONFLICT OF INTERESTS

The authors declare no conflicts of interest.

COMPLIANCE WITH ETHICAL STANDARDS

This work was performed in accordance with all applicable international, national, and institutional principles for the care and use of animals.

Additional information

Translated by I. Shipounova

Abbreviations: АОА, antioxidant activity; PUFAs, polyunsaturated fatty acids; PC, phosphatidylcholine; CEO, clove essential oil; Cas-Na, sodium caseinate; FO, fish oil; ACW, total antioxidant capacity of water-soluble plasma compounds; ACL, antioxidant capacity of lipid-soluble compounds in lipids; CL, chemiluminescence.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sazhina, N.N., Semenova, M.G., Antipova, A.S. et al. The Effect of the Composition of a Liposomal Nanocomplex on the Antioxidant Activity of Murine Blood Plasma and Lipids of the Liver and Brain. BIOPHYSICS 65, 649–655 (2020). https://doi.org/10.1134/S0006350920040193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350920040193

Navigation