Skip to main content
Log in

The Effects of Gasomediators on the Са2+-Dependent Potassium Permeability of the Erythrocyte Membrane

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

We investigated the effects of the H2S and CO gasomediators on Ca2+-dependent potassium channels and an anion exchanger, which participate in the induction of the hyperpolarization response of the erythrocyte membrane and play an important role in regulation of the volume and deformability of erythrocytes. We showed that in the presence of H2S and CO donors, the amplitude of the redox-stimulated membrane hyperpolarization decreased significantly due to a decrease in the activity of Ca2+-dependent potassium channels. It was found that H2S and CO eliminate the compression of erythrocytes observed during activation of Ca2+-dependent potassium channels or inhibition of the anion exchanger. It was shown that the H2S donor significantly increases the erythrocyte deformability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. R. Huisjes, A. Bogdanova, W. W. van Solinge, et al., Front. Physiol. 9, 656 (2018).

    Article  Google Scholar 

  2. H. Guizouarn, N. Gabillat, R. Motais, and F. Borgese, J. Physiol. 535 (Pt 2), 497 (2001).

    Article  Google Scholar 

  3. A. Bogdanova, A. Makhro, J. Wang, et al., Int. J. Mol. Sci. 14, 9848 (2013).

    Article  Google Scholar 

  4. A. D. Maher and P. W. Kuchel, Int. J. Biochem. Cell Biol. 35 (8), 1182 (2003).

    Article  Google Scholar 

  5. F. Lang, E. Lang, and M. Foller, Transfus. Med. Hemother. 39 (5), 308 (2012).

    Article  Google Scholar 

  6. S. L. Thomas, G. Bouyer, A. Cueff, et al., Blood Cells Mol. Dis. 46 (4), 261 (2011).

    Article  Google Scholar 

  7. J. S. Gibson, A. R. Cossins, and J. C. Ellory, J. Exp. Biol. 203 (9), 1395 (2000).

    Google Scholar 

  8. A. Bogdanova, M. Berenbrink, and M. Nikinmaa, Acta Physiol. 195, 305 (2009).

    Article  Google Scholar 

  9. S. V. Gusakova, I. V. Kovalev, Y. G. Birulina, et al., Biophysics 62 (2), 220 (2017).

    Article  Google Scholar 

  10. E. Dongo, G. Beliczai-Marosi, A. S. Dybvig, and L. Kiss, Nitric Oxide 81, 75 (2018).

    Article  Google Scholar 

  11. I. Barbagallo, G. Marrazzo, A. Frigiola, et al., Curr. Pharm. Biotechnol. 13 (6), 787 (2012).

    Article  Google Scholar 

  12. I. Bernhardt and J. C. Ellory, Red Cell Membrane Transport in Health and Disease (Springer, Berlin, 2013).

    Google Scholar 

  13. S. P. Srinivas, J. A. Bonanno, E. Lariviere, et al., Pflugers Arch. 447 (1), 97 (2003).

    Article  Google Scholar 

  14. S. Shin, Y. Ku, M. S. Park, and J. S. Suh, Korea Aust. Rheol, J. 16 (2), 85 (2004).

  15. A. C. Kalli and R. A. F. Reithmeier, PLOS Comput. Biol. 14 (7), 1 (2018).

    Article  Google Scholar 

  16. A. A. Platonova, S. V. Koltsova, G. V. Maksimov, et al., Biophysics (Moscow) 58 (3), 389 (2013).

    Article  Google Scholar 

  17. A. V. Sitozhevsky, I. V. Petrova, S. V. Kremeno, et al., Rozz. Fiziol. Zh. im. I. N. Sechenova 92 (4), 461 (2006).

    Google Scholar 

  18. Y. Yang, X. Jin, and C. Jiang, Antioxid. Redox Signal. 20 (6), 937 (2014).

    Article  Google Scholar 

  19. B. Del Carlo, M. Pellegrini, and M. Pellegrino, Biochim. Biophys. Acta 1612 (1): 107 (2003).

    Article  Google Scholar 

  20. C. L. Bianco, A. Savitsky, M. Feelisch, and M. M. Cortese-Krott, Biochem. Pharmacol. 149, 163 (2018).

    Article  Google Scholar 

  21. M. L. Jennings, Am. J. Physiol. Cell Physiol. 305, C941 (2013).

    Article  Google Scholar 

  22. Y. V. Kucherenko, L. Wagner-Britz, I. Bernhardt, and F. Lang, J. Membr. Biol. 246 (4), 315 (2013).

    Article  Google Scholar 

  23. E. Lang, S. M. Qadri, K. Jilani, et al. Basic Clin. Pharmacol. Toxicol. 111 (5), 348 (2012).

    Article  Google Scholar 

  24. S. N. Orlov, I. V. Petrova, N. I. Pokudin, et al., Biol. Membrany 9 (9), 885 (1992).

    Google Scholar 

  25. A. Dyrda, U. Cytlak, A. Ciuraszkiewicz, et al., PLoS One 5 (2), e9447 (2010).

    Article  ADS  Google Scholar 

Download references

Funding

This study was carried out with financial support from the Russian Foundation for Basic Research (within the framework of scientific project no. 19-415-703015) and the Council for Grants of the President of the Russian Federation (grant MK-143.2020.4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Petrova.

Ethics declarations

CONFLICT OF INTERESTS

The authors declare no conflicts of interest.

COMPLIANCE WITH ETHICAL STANDARDS

This work followed the ethical standards developed in accordance with the Declaration of Helsinki (as amended in 2013) and the Rules of Good Clinical Practice (order of the Ministry of Health of the Russian Federation of 01.04.2016). All individuals participating in the study gave informed consent.

Additional information

Translated by I. Shipounova

Abbreviations: КСа-channels, Са2+-dependent potassium channels; PMS, phenazine metasulfate; CORM-2, tricarbonyldichlororuthenium(II) dimer; HR, hyperpolarizing response.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrova, I.V., Birulina, Y.G., Belyaeva, S.N. et al. The Effects of Gasomediators on the Са2+-Dependent Potassium Permeability of the Erythrocyte Membrane. BIOPHYSICS 65, 614–618 (2020). https://doi.org/10.1134/S0006350920040156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350920040156

Navigation