Skip to main content
Log in

Photothermal Inactivation of Microorganisms under Relaxation of Highly Excited States of Sensitizers

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

This study demonstrates the susceptibility of the Escherichia coli and Bacillus subtilis planktonic bacteria to inactivation by shock acoustic waves that arise from the rapid formation and collapse of vapor bubbles in a medium locally heated to its boiling point. Local heating of the medium occurred due to heat release through the relaxation of highly excited electronic states of exogenous molecules of organic dyes. Dye molecules were excited by nanosecond laser pulses. Highly excited electronic states were formed as a result of stepwise absorption of two quanta of laser radiation. The dependence of the efficiency of microorganism inactivation on the dye concentration, excitation power density, and the distance from the shock wave source was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. J. O’Neill, Review on Antimicrobial Resistance. Tackling a Global Health Crisis: Initial Steps (Wellcome Trust, London, 2015).

    Google Scholar 

  2. S. D. Zakharov and A. B. Ivanov, Kvant. Elektron. 29 (3), 192 (1999).

    Google Scholar 

  3. A. A. Krasnovsky, Jr., Biophysics (Moscow) 49 (2), 289 (2004).

    Google Scholar 

  4. S. N. Letuta, S. N. Pashkevich, A. T. Ishemgulov, et al., J. Photochem. Photobiol. B 163, 232 (2016).

    Article  Google Scholar 

  5. M. Scholz and R. Dědic, in Singlet Oxygen: Applications in Biosciences and Nanosciences, Ed. by S. Nonell and C. Flors (Roy. Soc. Chem., 2016), Vol. 2, pp. 63–81.

    Google Scholar 

  6. A. A. Krasnovsky, Jr., Biochemistry 72 (10), 1065 (2007).

    Google Scholar 

  7. M. R. Hamblin, Curr. Opin. Microbiol. 33, 67 (2016).

    Article  Google Scholar 

  8. J. W. Costerton, P. S. Stewart, and E. P. Greenberg, Science 284, 1318 (1999).

    Article  ADS  Google Scholar 

  9. G. A. O’Toole, H. B. Kaplan, and R. Kolter, Annu. Rev. Microbiol. 54, 49, (2000).

    Article  Google Scholar 

  10. A. P. Veduta, M. D. Galanin, B. P. Kirsanov, and Z. A. Chizhikova, Pis’ma Zh. Eksp. Teor. Fiz. 11 (1), 157 (1970).

    Google Scholar 

  11. H.-B. Lin and M. R. Topp, Chem. Phys. Lett. 47 (3), 442 (1977).

    Article  ADS  Google Scholar 

  12. V. L. Ermolaev and V. A. Lyubimtsev, Optika Spektrosk. 60 (1), 74 (1986).

    Google Scholar 

  13. H. Fukumura, K. Kikuchi, K. Koike, and H. Kokubun, J. Photochem. Photobiol. 42 (2–3), 283 (1988).

  14. S. N. Letuta, U. G. Letuta, and S. N. Pashkevich, Biophysics (Moscow) 64 (4), 576 (2019).

    Article  Google Scholar 

  15. V. V. Ryl’kov and E. A. Cheshev, Dokl. Akad. Nauk SSSR 281 (3), 648 (1985).

    Google Scholar 

  16. V. V. Ryl’kov and E. A. Cheshev, Optika Spektrosk. 63 (5), 1030 (1987).

    Google Scholar 

  17. S. N. Letuta, Vestn. OGU 5, 88 (2002).

    Google Scholar 

  18. K. K. Rohatgi-Mukherjee and A. K. Mukhopadhyay, Indian J. Pure Appl. Phys. 14 (6), 481 (1976).

    Google Scholar 

  19. L. V. Levshin and A. M. Saletskii, Luminescence and Its Measurement (Moscow State Univ., Moscow, 1989) [in Russian].

    Google Scholar 

  20. N. Kashef, Y.-Y. Huang, M. R. Hamblin, Nanophotonics 6 (5), 853 (2017).

    Article  Google Scholar 

  21. A. A. Aleksandrov, V. A. Belogol’skii, V. I. Levtsov, et al., SSSRD 190-2000: Tables of Standard Reference Data. Water: Speed of Sound at Temperatures of 0 to 100 Degrees Centigrade and Pressures of 0.101325 to 100 MPa (Izd. Standartov, Moscow, 2000) [in Russian].

    Google Scholar 

Download references

Funding

The work was supported by the Ministry of Education and Science of the Russian Federation, project FSGU-2020-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Letuta.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. V. Makeeva

Abbreviations: HEES, highly excited electronic states.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Letuta, S.N., Pashkevich, S.N., Ishemgulov, A.T. et al. Photothermal Inactivation of Microorganisms under Relaxation of Highly Excited States of Sensitizers. BIOPHYSICS 65, 599–605 (2020). https://doi.org/10.1134/S0006350920040089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350920040089

Navigation