Skip to main content
Log in

Methionine-Coated Fe3O4 Nanoparticles: An Efficient and Reusable Nanomagnetic Catalyst for the Synthesis of 5-Substituted 1H-Tetrazoles

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Methionine-coated Fe3O4 nanoparticles, a magnetically reusable and environmentally friendly heterogeneous catalyst, was synthesized. The new catalyst was characterized by FT-IR spectra, XRD, SEM, and EDX analysis and was used to catalyze the cycloaddition of nitriles and sodium azide in DMSO at 120°C to give the corresponding 5-substituted 1H-tetrazoles. Methionine-coated Fe3O4 nanoparticles proved to be highly efficient for this organic reaction. The catalyst can be easily separated and reused several times without loss of activity. The proposed procedure also offers several benefits such as quick reaction, high yields, clean process, low-cost heterogeneous catalyst, low loading of catalyst, and simple operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Scheme
Scheme
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Myznikov, L.V., Hrabalek, A., and Koldobskii, G.I., Chem. Heterocycl. Compd., 2007, vol. 43, p. 1. https://doi.org/10.1007/s10593-007-0001-5

    Article  CAS  Google Scholar 

  2. Ostrovskii, V.A., Trifonov, R.E., and Popova, E.A., Russ. Chem. Bull., Int. Ed., 2012, vol. 61, p. 768. https://doi.org/10.1007/s11172-012-0108-4

    Article  CAS  Google Scholar 

  3. Wei, C., Bian, M., and Gong, G., Molecules, 2015, vol. 20, p. 5528. https://doi.org/10.3390/molecules20045528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dolusic, E., Larrieu, P., Moineaux, L., Stroobant, V., Pilotte, L., Colau, D., Pochet, L., Van den Eynde, B.T., Masereel, B., and Wouters, J. J. Med. Chem., 2011, vol. 54, p. 5320. https://doi.org/10.1021/jm2006782

    Article  CAS  PubMed  Google Scholar 

  5. Sarvary, A. and Maleki, A., Mol. Diversity, 2015, vol. 19, p. 189. https://doi.org/10.1007/s11030-014-9553-3

    Article  CAS  Google Scholar 

  6. Jung, M.E., Lal, H., and Gatch, M.B., Neurosci. Biobehav. Rev., 2002, vol. 26, p. 429. https://doi.org/10.1016/S0149-7634(02)00010-6

    Article  CAS  PubMed  Google Scholar 

  7. Ornstein, P. L., Arnold, M. B., Allen, N. K., Bleisch, T., Borromeo, P.S., Lugar, C. W., Leander, J. D., Lodge, D., and Schoepp, D.D., J. Med. Chem., 1996, vol. 39, p. 2219. https://doi.org/10.1021/jm950912p

    Article  CAS  PubMed  Google Scholar 

  8. Hiskey, M., Chavez, D.E., Noud, D.C., Son, S.F., Berghout, H.L., Bome, C.A., Proc. Int. Pyrotech. Semin., 2000, vol. 27, p. 3.

    Google Scholar 

  9. Frija, L.M.T., Fausto, R., Loureiro, R.M.S., and Cristiano, M.L.S., J. Mol. Catal. A: Chem., 2009, vol. 305, p. 142. https://doi.org/10.1016/j.molcata.2008.12.007

    Article  CAS  Google Scholar 

  10. Jursic, B.S. and Leblanc, B.W., J. Heterocycl. Chem., 1998, vol. 35, p. 405. https://doi.org/10.1002/jhet.5570350224

    Article  CAS  Google Scholar 

  11. Hennessy, E.J., Cornebise, M., Gingipalli, L., Grebe, T., Hande, S., Hoesch, V., Huynh, H., Throner, S., Varnes, J., and Wu, Y., Tetrahedron Lett., 2017, vol. 58, p. 1709. https://doi.org/10.1016/j.tetlet.2017.03.056

    Article  CAS  Google Scholar 

  12. Gawande, S.D., Raihan, M.J., Zanwar, M.R., Kavala, V., Janreddy, D., Kuo, C., Chen, M., Kuo, T., and Yao, C., Tetrahedron, 2013, vol. 69, p. 1841. https://doi.org/10.1016/j.tet.2012.12.062

    Article  CAS  Google Scholar 

  13. Jin, T., Kitahara, F., Kamijo, S., and Yamamoto, Y., Tetrahedron Lett., 2008, vol. 49, p. 2824. https://doi.org/10.1016/j.tetlet.2008.02.115

    Article  CAS  Google Scholar 

  14. Kantam, M.L., Shiva Kumar, K.B., and Sridhar, C., Adv. Synth. Catal., 2005, vol. 347, p. 1212. https://doi.org/10.1002/adsc.200505011

    Article  CAS  Google Scholar 

  15. Akula, R.K., Adimulam, C.S., Gangaram, S., Kengiri, R., Banda, N., and Pamulaparthy, S.R., Lett. Org. Chem., 2014, vol. 11, p. 440. https://doi.org/10.2174/1570178611666140210213157

    Article  CAS  Google Scholar 

  16. Akhlaghinia, B. and Rezazadeh, S., J. Braz. Chem. Soc., 2012, vol. 23, p. 2197. https://doi.org/10.1590/S0103-50532013005000005

    Article  CAS  Google Scholar 

  17. Bonnamour, J. and Bolm, C., Chem. Eur. J., 2009, vol. 15, p. 4543. https://doi.org/10.1002/chem.200900169

    Article  CAS  PubMed  Google Scholar 

  18. Zarghani, M. and Akhlaghinia, B., RSC Adv., 2016, vol. 6, p. 31850. https://doi.org/10.1039/C6RA07252F

    Article  CAS  Google Scholar 

  19. Abdollahi-Alibeika, M. and Moaddeli, A., New J. Chem., 2014, vol. 38, p. 3102. https://doi.org/10.1039/C3NJ01149F

    Article  Google Scholar 

  20. Guggilapu, S.D., Prajapti, S.K., Gupta, A.N.K.K., and Babu, B.N., Synlett, 2016, vol. 27, p. 1241. https://doi.org/10.1055/s-0035-1561559

    Article  CAS  Google Scholar 

  21. Mani, A.K., Singh, S.K., and Wasthi, A., Tetrahedron Lett., 2014, vol. 55, p. 1879. https://doi.org/10.1016/j.tetlet.2014.01.117

    Article  CAS  Google Scholar 

  22. Bayat, N.Y., Habibi, D., and Moshaee, S., Tetrahedron Lett., 2009, vol. 50, p. 4435. https://doi.org/10.1016/j.tetlet.2009.05.048

    Article  CAS  Google Scholar 

  23. Vorona, S., Artamonova, T., Zevatskii, Y., and Myznikov, L., Synthesis, 2014, vol. 46, p. 781. https://doi.org/10.1055/s-0033-1340616

    Article  CAS  Google Scholar 

  24. Gowd, M.R.M.B. and Pasha, M.A., J. Chem. Sci., 2011, vol. 123, p. 75. https://doi.org/10.1007/s12039-011-0065-8

    Article  CAS  Google Scholar 

  25. Prajapti, S.K., Nagarsenkar, A., and Babu, B.N., Tetrahedron Lett., 2014, vol. 55, p. 3507. https://doi.org/10.1016/j.tetlet.2014.04.089

    Article  CAS  Google Scholar 

  26. Ishihara, K., Kawashima, M., Shioiri, T., and Matsugi, M., Synlett, 2016, vol. 27, p. 2225. https://doi.org/10.1055/s-0035-1561668

    Article  CAS  Google Scholar 

  27. He, J., Li, B., Chen, F., Xu, Z., and Yin, G., J. Mol. Catal. A: Chem., 2009, vol. 304, p. 135. https://doi.org/10.1016/j.molcata.2009.01.037

    Article  CAS  Google Scholar 

  28. Meshram, G.A., Deshpande, S.S., Wagh, P.A., and Vala, V.A., Tetrahedron Lett., 2014, vol. 55, p. 3555. https://doi.org/10.1016/j.tetlet.2014.04.101

    Article  CAS  Google Scholar 

  29. Aridoss, G. and Laali, K.K., Eur. J. Org. Chem., 2011, vol. 2011, p. 6343. https://doi.org/10.1002/ejoc.201100957

    Article  CAS  Google Scholar 

  30. Das, B., Reddy, C.R., Kumar, D.N., Krishnaiah, M., and Narender, R., Synlett, 2010, vol. 2010, no. 3, p. 391. https://doi.org/10.1055/s-0029-1219150

    Article  CAS  Google Scholar 

  31. Lang, L., Li, B., Liu, W., Li, J., Xu, Z., and Yin, G., Chem. Commun., 2010, vol. 46, p. 448. https://doi.org/10.1039/B912284B

    Article  CAS  Google Scholar 

  32. Rama, V., Kanagaraj, K., and Pitchumani, K., J. Org. Chem., 2011, vol. 76, p. 9090. https://doi.org/10.1021/jo201261

    Article  CAS  PubMed  Google Scholar 

  33. Ghodsinia, S.S.E. and Akhlaghinia, B., RSC Adv., 2015, vol. 5, p. 49849. https://doi.org/10.1039/C5RA08147E

    Article  CAS  Google Scholar 

  34. Khan, K.M., Fatima, I., Saad, S.M., Taha, M., and Voelter, W., Tetrahedron Lett., 2016, vol. 57, p. 523. https://doi.org/10.1016/j.tetlet.2015.12.067

    Article  CAS  Google Scholar 

  35. Bosch, L. and Vilarrasa, J., Angew. Chem., Int. Ed., 2007, vol. 46, p. 3926. https://doi.org/10.1002/anie.200605095

    Article  CAS  Google Scholar 

  36. Patil, V.S., Nandre, K.P., Borse, A.U., and Bhosale, S.V., J. Chem., 2012, vol. 9, article ID 615891. https://doi.org/10.1155/2012/615891

  37. Marvi, O., Alizadeh, A., and Zarrahi, S., Bull. Korean Chem. Soc., 2011, vol. 32, p. 4001. https://doi.org/10.5012/bkcs.2011.32.11.4001

    Article  CAS  Google Scholar 

  38. Cantillo, D., Gutmann, B., and Kappe, C.O., J. Am. Chem. Soc., 2011, vol. 133, p. 4465. https://doi.org/10.1021/ja109700b

    Article  CAS  PubMed  Google Scholar 

  39. Myznikov, L.V., Efimova, Yu.A., Artamonova, T.V., and Koldobskii, G.I., Russ. J. Org. Chem., 2011, vol. 47, p. 728. https://doi.org/10.1134/s1070428011050125

    Article  CAS  Google Scholar 

  40. Karimian, A., Mohammadzadeh Kakhki, R., and Kargar Beidokhti, H., J. Chin. Chem. Soc., 2017, vol. 64, p. 1316. https://doi.org/10.1002/jccs.201700060

    Article  CAS  Google Scholar 

  41. Karimian, A., J. Heterocycl. Chem., 2018, vol. 55, p. 645. https://doi.org/10.1002/jhet.3082

    Article  CAS  Google Scholar 

  42. Karimian, A. and Karimian, H., J. Chem. Res., 2017, vol. 41, p. 406. https://doi.org/10.3184/174751917X14967701767049

    Article  CAS  Google Scholar 

  43. Karimian, A., Eshghi, H., Bakavoli, M., Shiri, A., Saadatmandzadeh, M., Asghari, T., and Moradi, H., J. Iran. Chem. Soc., 2015, vol. 12, p. 1501. https://doi.org/10.1007/s13738-015-0620-1

    Article  CAS  Google Scholar 

  44. Karimian, A., Eshghi, H., Bakavoli, M., and Shiri, A., J. Heterocycl. Chem., 2015, vol. 54, p. 151. https://doi.org/10.1002/jhet.2556

    Article  CAS  Google Scholar 

  45. Asgari, S., Fakhari, Z., and Berijani, S., J. Nanostruct., 2014, vol. 4, p. 55. https://doi.org/10.7508/jns.2014.01.007

    Article  Google Scholar 

  46. Li, Y.-S., Church, J.S., and Woodhead, A.L., J. Magn. Mater., 2012, vol. 324, p. 1543. https://doi.org/10.1016/j.jmmm.2011.11.065

    Article  CAS  Google Scholar 

  47. Gupta, P.K., Tiwari, S., Khan, Z.H., and Solanki, P.R., J. Mater. Chem. B, 2017, vol. 5, p. 2019. https://doi.org/10.1039/C6TB02594C

    Article  CAS  PubMed  Google Scholar 

  48. JCPDS Data Card, International Center of Diffraction Data. Swarthmore, PA. 1988.

  49. Park, J.Y., Choi, E.S., Baek, M.J., and Lee, G.H., Mater. Lett., 2009, vol. 63, p. 379. https://doi.org/10.1016/j.matlet.2008.10.057

    Article  CAS  Google Scholar 

  50. Namvar-Mahboub, M., Khodeir, E., and Karimian, A., Res. Chem. Intermed., 2018, vol. 44, p. 6877. https://doi.org/10.1007/s11164-018-3527-5

    Article  CAS  Google Scholar 

  51. Du, Z., Si, C., Li, Y., Wang, Y., and Lu, J., Int. J. Mol. Sci., 2012, vol. 13, p. 4696. https://doi.org/10.3390/ijms13044696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rostamizadeh, S., Ghaieni, H., Aryan, R., and Amani, A., Chin. Chem. Lett., 2009, vol. 20, p. 1311. https://doi.org/10.1016/j.cclet.2009.06.020

    Article  CAS  Google Scholar 

  53. Paudel, S., Min, X., Achary, S., Khadka, D.B., Yoon, G., Kim, K.M., and Cheon, S.H., Bioorg. Med. Chem., 2017, vol. 25, p. 5278. https://doi.org/10.1016/j.bmc.2017.07.046

    Article  CAS  PubMed  Google Scholar 

  54. Swapnil, A.P. and Dipak, S.D., Synth. Commun., 2017, vol. 47, p. 779. https://doi.org/10.1080/00397911.2017.1285033

    Article  CAS  Google Scholar 

  55. Razavi, N. and Akhlaghinia, B., RSC Adv., 2015, vol. 5, p. 12372. https://doi.org/10.1039/C4RA15148H

    Article  CAS  Google Scholar 

  56. Kantam, M.L., Shiva Kumar, K.B., and Phani Raja, K.J., J. Mol. Catal. A: Chem., 2006, vol. 247, p. 186. https://doi.org/10.1016/j.molcata.2005.11.046

    Article  CAS  Google Scholar 

  57. Paudel, S., Min, X., Achary, S., Khadka, D.B., Yoon, G., Kim, K.M., and Cheon, S.H., Bioorg. Med. Chem., 2017, vol. 25, p. 5278. https://doi.org/10.1016/j.bmc.2017.07.046

    Article  CAS  PubMed  Google Scholar 

  58. Taghavi, F., Gholizadeh, M., Saljooghi, A.S., and Ramezani, M., Med. Chem. Commun., 2017, vol. 8, p. 1953. https://doi.org/10.1039/C7MD00302A

    Article  CAS  Google Scholar 

  59. Wang, H., Zhao, W., Du, J., Wei, F., Chen, Q., and Wang, X., Appl. Organomet. Chem., 2019, vol. 33, p. 5132. https://doi.org/10.1002/aoc.5132

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge the partial support of this study by the University of Gonabad Research Council. This research did not receive any specific funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Karimian.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimian, A., Namvar-Mhaboub, M. & Abbasi, R. Methionine-Coated Fe3O4 Nanoparticles: An Efficient and Reusable Nanomagnetic Catalyst for the Synthesis of 5-Substituted 1H-Tetrazoles. Russ J Org Chem 56, 1646–1653 (2020). https://doi.org/10.1134/S1070428020090237

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428020090237

Keywords:

Navigation