Skip to main content
Log in

Optimization of Supports in Bifunctional Supported Pt Catalysts for Polystyrene Hydrocracking to Liquid Fuels

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A series of bifunctional platinum catalysts were prepared, supported on alumina or different zeolites, some of which were submitted to either desilication or dealumination in order to modify their acidic properties. The catalysts were characterized for their structural and textural properties, their acidic properties, including distribution of acid strength and Brønsted and Lewis acidity, their metallic properties, and used in the hydrocracking of polystyrene under kinetic control, where activity in end-of-chain scission and random scission of the polymer has been quantified as well as the distribution of products. Activation energies and pre-exponential factors have been calculated from the kinetic data, and analyzed in terms of compensation effect, in order to extract conclusions on activity, active centers and reaction pathways. Finally, activation energies, both of end-of-chain and random scissions, yield to gasoline fraction and percentage of aromatics in the gasoline fraction have been correlated with catalytic properties in order to extract conclusions on the major catalytic properties affecting catalytic performance in this process, from the point of view of catalytic design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study and not specifically included in this published article are available from the corresponding author on reasonable request.

References

  1. APME (2019) Plastics – The Facts 2019. Association of Plastic Manufacturers in Europe. www.plasticseurope.org/en/resources/publications/1804-plastics-facts-2019 Accessed 15 July 2020

  2. Hopewell J, Dvorak R, Kosior E (2009) Plastic recycling: challenges and opportunities. Philos Trans R Soc B 364:2115–2126. https://doi.org/10.1098/rstb.2008.0311

    Article  CAS  Google Scholar 

  3. Vollmer I, Jenks MJF, Roelands MCP, White RJ, van Harmelen T, de Wild P, van der Laan GP, Meirer F, Keurentjes JTF, Weckhuysen BM (2020) Beyond mechanical recycling: giving new life to plastic waste. Angew Chem Int Edit. https://doi.org/10.1002/anie.201915651

    Article  Google Scholar 

  4. Gama N, Godinho B, Marques G, Silva R, Barros-Timmons A, Ferreira A (2020) Recycling of polyurethane scraps via acidolysis. Chem Eng J 395:125102. https://doi.org/10.1016/j.cej.2020.125102

    Article  CAS  Google Scholar 

  5. van Grieken R, Serrano DP, Aguado J, García R, Rojo C (2001) Thermal and catalytic cracking of polyethylene under mild conditions. J Anal Appl Pyrol 58–59:127–142. https://doi.org/10.1016/S0165-2370(00)00145-5

    Article  Google Scholar 

  6. Elordi G, Olazar M, López G, Artetxe M, Bilbao J (2011) Product yields and compositions in the continuous pyrolysis of high-density polyethylene in a conical spouted bed reactor. Ind Eng Chem Res 50:6650–6659. https://doi.org/10.1021/ie200186m

    Article  CAS  Google Scholar 

  7. Chen T, Yu J, Ma C, Bikane K, Sun LS (2020) Catalytic performance and debromination of Fe-Ni bimetallic MCM-41 catalyst for the two-stage pyrolysis of waste computer casing plastic. Chemosphere 248:125964. https://doi.org/10.1016/j.chemosphere.2020.125964

    Article  CAS  PubMed  Google Scholar 

  8. Kouzu M, Kuwato T, Ohto Y, Suzuki K, Kojima M (2020) Single stage upgrading with the help of bifunctional catalysts of Pt supported on solid acid for converting product oil of triglyceride thermal cracking into drop-in fuel. Fuel Process Technol 202:106364. https://doi.org/10.1016/j.fuproc.2020.106364

    Article  CAS  Google Scholar 

  9. López G, Artetxe M, Amutio M, Bilbao J, Olazar M (2017) Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. Renew Sust Energ Rev 73:346–368. https://doi.org/10.1016/j.rser.2017.01.142

    Article  CAS  Google Scholar 

  10. Munir D, Irfam MF, Usman MR (2018) Hydrocracking of virgin and waste plastics: a detailed review. Renew Sust Energ Rev 90:490–515. https://doi.org/10.1016/j.rser.2018.03.034

    Article  CAS  Google Scholar 

  11. Bjelic A, Grilc M, Likozar B (2020) Bifunctional metallic-acidic mechanisms of hydrodeoxygenation of eugenol as lignin model compound over supported Cu, Ni, Pd, Pt, Rh and Ru catalyst materials. Chem Eng J 394:124914. https://doi.org/10.1016/j.cej.2020.124914

    Article  CAS  Google Scholar 

  12. Hao N, Alper K, Patel H, Tekin K, Karagoz S, Ragauskas AJ (2020) One-step transformation of biomass to fuel precursors using a bi-functional combination of Pd/C and water tolerant Lewis acid. Fuel 277:118200. https://doi.org/10.1016/j.fuel.2020.118200

    Article  CAS  Google Scholar 

  13. Li T, Wang W, Feng ZL, Bai XF, Su XF, Yang L, Jia GZ, Guo CM, Wu W (2020) The hydroisomerization of n-hexane over highly selective Pd/ZSM-22 bifunctional catalysts: The improvements of metal-acid balance by room temperature electron reduction method. Fuel 272:117717. https://doi.org/10.1016/j.fuel.2020.117717

    Article  CAS  Google Scholar 

  14. Guan WX, Chen X, Hu HQ, Tsang CW, Zhang J, Lin CSK, Liang CH (2020) Catalytic hydrogenolysis of lignin β-O-4 aryl ether compound and lignin to aromatics over Rh/Nb2O5 under low H2 pressure. Fuel Process Technol 203:106392. https://doi.org/10.1016/j.fuproc.2020.106392

    Article  CAS  Google Scholar 

  15. Venkatesh KR, Hu J, Tierney JW, Wender I (1996) Hydrocracking and hydroisomerization of long-chain alkanes and polyolefins over metal-promoted anion-modified transition metal oxides. US patent 6,184,430

  16. Ding W, Liang J, Anderson LL (1997a) Hydrocracking and hydroisomerization of high-density polyethylene and waste plastic over zeolite and silica-alumina-supported Ni and Ni-Mo sulfides. Energ Fuel 11:1219–1224. https://doi.org/10.1021/ef970051q

    Article  CAS  Google Scholar 

  17. Escola JM, Aguado J, Serrano DP, Briones L, Díaz de Tuesta JL, Calvo R, Fernández E (2012) Conversion of polyethylene into transportation fuels by the combination of termal cracking and catalytic hydroreforming over Ni-supported hierarchical Beta zeolite. Energ Fuel 26:3187–3195. https://doi.org/10.1021/ef300938r

    Article  CAS  Google Scholar 

  18. Escola JM, Aguado J, Serrano DP, García A, Peral A, Briones L, Calvo R, Fernández E (2011) Catalytic hydroreforming of the polyethylene termal cracking oil over Ni supported hierarchical zeolites and mesostructured aluminosilicates. Appl Catal B 106:405–415. https://doi.org/10.1016/j.apcatb.2011.05.048

    Article  CAS  Google Scholar 

  19. Rodiansono R, Wega T (2010) Activity test and regeneration of NiMo/Z catalyst for hydrocracking of waste plastic fraction to gasoline fraction. Indones J Chem 5:261–268

    Article  Google Scholar 

  20. Joo HS, Guin JA (1997) Hydrocracking of a plastics pyrolysis gas oil to naphtha. Energ Fuel 11:586–592. https://doi.org/10.1021/ef960151g

    Article  CAS  Google Scholar 

  21. Joo HS, Guin JA (1998) Continuous upgrading of a plastics pyrolysis liquid to an environmentally favorable gasoline range product. Fuel Process Technol 57:25–40

    Article  CAS  Google Scholar 

  22. Puechchan R, Duangchan A (2004) Catalytic hydrocracking of diphenylmethane, HDPE and heavy oil from PS pyrolysis using nanocatalyst prepared in reverse micelles: effect of sulfur and water. The Joint International Conference on Sustainable Energy and Environment. Hua Hin, Thailand

  23. Karagoz S, Karayildirim T, Ucar S, Yuksel M, Yanik J (2003) Liquefaction of municipal waste plastics in VGO over acidic and non-acidic catalysts. Fuel 82:415–423. https://doi.org/10.1016/S0016-2361(02)00250-8

    Article  CAS  Google Scholar 

  24. Ding W, Liang J, Anderson LL (1997b) Thermal and catalytic degradation of high density polyethylene and commingled post-consumer plastic waste. Fuel Process Technol 51:47–62. https://doi.org/10.1016/S0378-3820(96)01080-6

    Article  CAS  Google Scholar 

  25. Balakrishnan RK, Guria C (2007) Thermal degradation of polystyrene in the presence of hydrogen by catalyst in solution. Polym Degrad Stabil 92:1583–1591. https://doi.org/10.1016/j.polymdegradstab.2007.04.014

    Article  CAS  Google Scholar 

  26. Hesse ND, White RL (2004) Polyethylene catalytic hydrocracking by PtHZSM-5, PtHY, and PtHMCM-41. J Appl Polym Sci 92:1293–1301. https://doi.org/10.1002/app.20083

    Article  CAS  Google Scholar 

  27. Garforth A, Hernández-Martínez J, Akah A, Cooke M, Cresswell D (2011) Modified zeolites and their use in the recycling of plastic waste. Patent WO2010139997 A3

  28. Serrano DP, Aguado J, Escola JM (2000) Catalytic conversion of polystyrene over HMCM-41, HZSM-5 and amorphous SiO2-Al2O3: comparison with thermal cracking. Appl Catal B 25:181–189. https://doi.org/10.1016/S0926-3373(99)00130-7

    Article  CAS  Google Scholar 

  29. Schulz GV, Baumann H (1968) Thermodynamic properties expansion coefficient and viscosity value of polystyrene in tetrahydrofuran. Makromolekul Chem 114:122–138. https://doi.org/10.1002/macp.1968.021140109

    Article  CAS  Google Scholar 

  30. Xu D, Carbonell RG, Kiserow DJ, Roberts GW (2003) Kinetics and transport processes in the heterogeneous catalytic hydrogenation of polystyrene. Ind Eng Chem Res 42:3509–3515. https://doi.org/10.1021/ie0301841

    Article  CAS  Google Scholar 

  31. Fuentes-Ordóñez EG, Salbidegoitia JA, González-Marcos MP, González-Velasco JR (2013) Transport phenomena in catalytic hydrocracking of polystyrene in solution. Ind Eng Chem Res 52:14798–14807. https://doi.org/10.1021/ie401968r

    Article  CAS  Google Scholar 

  32. Fuentes-Ordóñez EG, Salbidegoitia JA, González-Marcos MP, González-Velasco JR (2016) Mechanism and kinetics in catalytic hydrocracking of polystyrene in solution. Polym Degrad Stabil 124:51–59. https://doi.org/10.1016/j.polymdegradstab.2015.12.009

    Article  CAS  Google Scholar 

  33. Fuentes-Ordóñez EG, Salbidegoitia JA, González-Marcos MP, Ayastuy JL, Gutiérrez-Ortiz MA, González-Velasco JR (2015) Pt/ITQ-6 zeolite as a bifunctional catalyst for hydrocracking of waste plastics containing polystyrene. J Mater Cycles Waste Manag 17:465–475. https://doi.org/10.1007/s10163-014-0322-2

    Article  CAS  Google Scholar 

  34. Fuentes-Ordóñez EG, Salbidegoitia JA, Ayastuy JL, Gutiérrez-Ortiz MA, González-Marcos MP, González-Velasco JR (2014) High external surface Pt/zeolite catalysts for improving polystyrene hydrocracking. Catal Today 227:163–170. https://doi.org/10.1016/j.cattod.2013.09.004

    Article  CAS  Google Scholar 

  35. Ogura M, Shinomiya S, Tateno J, Nara Y, Nomura M, Kikuchi E, Matsukata M (2001) Alkali-treatment technique – new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites. Appl Catal A 219:33–43. https://doi.org/10.1016/S0926-860X(01)00645-7

    Article  CAS  Google Scholar 

  36. Verboekend D, Vilé G, Pérez-Ramírez J (2012) Hierarchical Y and USY zeolites designed by post-synthetic strategies. Adv Funct Mater 22:916–928. https://doi.org/10.1002/adfm.201102411

    Article  CAS  Google Scholar 

  37. Marques JP, Gener I, Ayrault P, Bordado JC, Lopes JM, Ribeiro FR, Guisnet M (2005) Dealumination of HBEA zeolite by steaming and acid leaching: distribution of the various aluminic species and identification of the hydroxyl groups. CR Chimie 8:399–410. https://doi.org/10.1016/j.crci.2005.01.002

    Article  CAS  Google Scholar 

  38. Ryoo R, Cho SJ (1993) Platinum cluster supported on zeolite A by ion exchange of Pt(NH3)42+. Stud Surf Sci Catal 75:1633–1636. https://doi.org/10.1016/S0167-2991(08)64498-5

    Article  CAS  Google Scholar 

  39. Sachtler WMH, Zhang Z (1993) Zeolite-supported transition metal catalysts. Adv Catal 39:129–220. https://doi.org/10.1016/S0360-0564(08)60578-7

    Article  CAS  Google Scholar 

  40. Van den Broek ACM, Van Grondelle J, Van Santen RA (1997) Preparation of highly dispersed platinum particles in HZSM-5 zeolite: a study of the pretreatment process of [Pt(NH3)4]2+. J Catal 167:417–424. https://doi.org/10.1006/jcat.1997.1600

    Article  Google Scholar 

  41. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319. https://doi.org/10.1021/ja01269a023

    Article  CAS  Google Scholar 

  42. de Boer JH, Lippens BC, Linsen BG, Broekhoff JCP, van den Heuvel A, Osinga TJ (1966) The t-curve of multimolecular N2-adsorption. J Colloid Interf Sci 21:405–414. https://doi.org/10.1016/0095-8522(66)90006-7

    Article  Google Scholar 

  43. Horváth G, Kawazoe K (1983) Method for the calculation of effective pore size distribution in molecular sieve carbon. J Chem Eng Jpn 16:470–475. https://doi.org/10.1252/jcej.16.470

    Article  Google Scholar 

  44. Barret EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380. https://doi.org/10.1021/ja01145a126

    Article  Google Scholar 

  45. Corma A, Fornés V, Forni L, Márquez F, Martínez-Triguero J, Moscotti D (1998) 2,6-Di-tert-butylpyridine as a probe molecule to measure external acidity of zeolites. J Catal 179:451–458. https://doi.org/10.1006/jcat.1998.2233

    Article  CAS  Google Scholar 

  46. Fuentes-Ordóñez EG (2015) Diseño de catalizadores bifuncionales para el proceso de hidrocraqueo de poliestireno en fase líquida aplicado a la valorización de residuos plásticos. PhD Dissertation. The University of the Basque Country, UPV/EHU, Spain

  47. Bond GC (1985) The significance of the compensation effect and the definition of active centres in metal catalysts. Z Phys Chem 144:21–31. https://doi.org/10.1524/zpch.1985.144.144.021

    Article  CAS  Google Scholar 

  48. Emeis CA (1993) Determination of integrated molar extinction coefficients for infrared adsorption bands of pyridine adsorbed on solid acid catalysts. J Catal 141:347–354. https://doi.org/10.1006/jcat.1993.1145

    Article  CAS  Google Scholar 

  49. Góra-Marek K, Tarach K, Choi M (2014) 2,6-di-tert-butylpiridine sorption approach to quantify the external acidity in hierarchical zeolites. J Phys Chem C 118:12266–12274. https://doi.org/10.1021/jp501928k

    Article  CAS  Google Scholar 

  50. Zhou J, Liu Z, Li L, Wang Y, Gao H, Yang W, Xie Z, Tang Y (2013) Hierarchical mesoporous ZSM-5 zeolite with increased external surface acid sites and high catalytic performance in o-xylene isomerization. Chin J Catal 34:1429–1433. https://doi.org/10.1016/S1872-2067(12)60602-0

    Article  CAS  Google Scholar 

  51. Talebian-Kiakalaieh A, Tarighi S (2020) Synthesis of hierarchical Y and ZSM-5 zeolites using post-treatment approach to maximize catalytic cracking performance. J Ind Eng Chem 88:167–177. https://doi.org/10.1016/j.jiec.2020.04.009

    Article  CAS  Google Scholar 

  52. Chen YK, Hsieh CH, Wang WC (2020) The production of renewable aviation fuel from waste cooking oil. Part II: Catalytic hydrocracking/isomerization of hydro-processed alkanes into jet fuel range products. Renew Energy 157:731–740. https://doi.org/10.1016/j.renene.2020.04.154

    Article  CAS  Google Scholar 

  53. Dou XM, Jiang X, Li WZ, Zhu CF, Liu QC, Lu Q, Zheng XS, Chang HM, Jameel H (2020) Highly efficient conversion of Kraft lignin into fuels with a Co-Zn-beta zeolite catalyst. Appl Catal B 268:118429. https://doi.org/10.1016/j.apcatb.2019.118429

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Spanish Ministry for Science and Innovation (Grant Nos. CTQ2010-17277/PPQ, with ERDF funding from the European Union), the Basque Government (Grant Nos. GIC-IT-657-13; research grant BPI-2010-150; GIC-IT-1297-19) and the University of the Basque Country, UPV/EHU (Grant Nos. UFI11/39; SGIker, with ERDF funding from the European Union) for their financial support.

Funding

Spanish Ministry for Science and Innovation (Grant No. CTQ2010-17277/PPQ). Basque Government (Grant Nos. GIC-IT-657-13; research grant BPI-2010-150; GIC-IT-1297-19). The University of the Basque Country, UPV/EHU (Grant No. UFI11/39). European Union through ERDF (Grant Nos. SGIker of the UPV/EHU and CTQ2010-17277/PPQ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pilar González-Marcos.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Marcos, M.P., Fuentes-Ordóñez, E.G., Salbidegoitia, J.A. et al. Optimization of Supports in Bifunctional Supported Pt Catalysts for Polystyrene Hydrocracking to Liquid Fuels. Top Catal 64, 224–242 (2021). https://doi.org/10.1007/s11244-020-01393-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01393-x

Keywords

Navigation