Skip to main content
Log in

Non-rigid cutting of soft tissue: physical evidences of complex mechanical interaction process of soft materials

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The application of medical waterjet achieves non-rigid separation of soft tissues. The separation effect is the result of the interaction between hydrodynamic and biomechanical nonlinear responses. In this study, a non-rigid cutting model of soft tissue was established based on fracture mechanics and energy conversion processes. It can clearly explain the physical reasons for the advantages of non-rigid separation: The extremely high impact speed, which is difficult to achieve through rigid separation, makes the stress and deformation of the soft tissue smaller. The non-rigid cutting model reveals the impact mechanism of waterjet impact velocity or pressure on the static separation effect. Based on the experimental observation of the physical morphology during the interaction process and the measurement of the dynamic separation rate, imaging evidences for dynamically evaluating the separation effect were proposed. The method of adjusting the separation effect including the splashing behavior of the waterjet was verified. The research results precisely link the application requirements of precision surgery with the physical form of the interactive process, establish a physical basis for expanding the advantages of non-rigid separation of soft tissue and provide guidance for the evaluation of dynamic separation effects.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. L. Jaeger, W. Linzenbold, A. Fech, M. Enderle, T. Abruzzese, A. Stenzl, W.K. Aicher, Neurourol. Urodyn. 39, 594 (2020)

    Article  Google Scholar 

  2. S. Belle, M. von Boscamp, M. Sold, S. Mack, L. Pilz, M. Ebert, G. Kaehler, Scand. J. Gastroenterol. 52, 222 (2017)

    Article  Google Scholar 

  3. G. Kraaij, A.J. Loeve, J. Dankelman, R.G.H.H. Nelissen, E.R. Valstar, J. Med. Devices 13, 021010 (2019)

    Article  Google Scholar 

  4. Y. Ogawa, A. Nakagawa, T. Washio, T. Arafune, T. Tominaga, Acta Neurochir. 155, 1879 (2013)

    Article  Google Scholar 

  5. V. Misrai, E. Rijo, K.C. Zorn, N. Barry-Delongchamps, A. Descazeaud, Eur. Urol. 76, 667 (2019)

    Article  Google Scholar 

  6. T. Bahls, F.A. Froehlich, A. Hellings, B. Deutschmann, A.O. Albu-Schaeffer, IEEE Trans. Bio-Med. Eng. 64, 284 (2017)

    Article  Google Scholar 

  7. A. Nakayashiki, T. Kawaguchi, A. Nakagawa, M. Sato, F. Mochizuki, T. Endo, T. Tominaga, J. Neurol. Surg. Part A 79, 309 (2018)

    Article  Google Scholar 

  8. C. Schlenk, A. Schwier, M. Heiss, T. Bahls, A. Albu-Schaeffer, in International Symposium on Medical Robotics (ISMR), Atlanta, GA (2019)

  9. A. Umemura, J. Fluid Mech. 797, 146 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  10. C. Liu, Y. Lu, B. Xia, P. Yu, Int. J. Impact Eng. 129, 141 (2019)

    Article  Google Scholar 

  11. X. Su, L. Zhou, H. Li, B. Xia, Z. Shen, Y. Lu, Geofluids 2019, 8623035 (2019)

    Google Scholar 

  12. R.M. Soares, P.F.T. Amaral, F.M.A. Silva, P.B. Goncalves, Nonlinear Dyn. 99, 351 (2020)

    Article  Google Scholar 

  13. A.C. Barnett, Y. Lee, J.Z. Moore, J. Manuf. Sci. Eng. ASME 138, 011005 (2016)

    Article  Google Scholar 

  14. J.Z. Moore, K. Malukhin, A.J. Shih, K.F. Ehmann, S. Malkin, CIRP Ann. Manuf. Technol. 60, 157 (2011)

    Article  Google Scholar 

  15. A. Asadian, R.V. Patel, M.R. Kermani, Ann. Biomed. Eng. 42, 73 (2014)

    Article  Google Scholar 

  16. J. Ciambella, A. Paolone, S. Vidoli, Mech. Mater. 42, 932 (2010)

    Article  Google Scholar 

  17. L.E. Bilston, NMR Biomed. 31, e3828 (2018)

    Article  Google Scholar 

  18. G. Rosamilia et al., J Cosmet Dermatol. US 19, 312 (2020)

    Article  Google Scholar 

  19. A.S. Mijailoyic, B. Qing, D. Fortunato, K.J. Van Vliet, Acta Biomater. 71, 388 (2018)

    Article  Google Scholar 

  20. T. Azar, V. Hayward, in Lecture Notes in Computer Science, ed. by F. Bello, P.J. Edwards, vol. 5104 (2008), p. 166

  21. M. Khadem, C. Rossa, R.S. Sloboda, N. Usmani, M. Tavakoli, IEEE Robot. Autom. Lett. 1, 800 (2016)

    Article  Google Scholar 

  22. M. Heverly, P. Dupont, J. Triedman, in IEEE International Conference on Robotics and Automation ICRA (2005), p. 1646

  23. Z. Hu, B. Zhang, W. Sun, CIRP Ann. Manuf. Technol. 61, 135 (2012)

    Article  Google Scholar 

  24. D. Gao, Y. Lei, B. Yao, Chin. J. Mech. Eng. 29, 1167 (2016)

    Article  Google Scholar 

  25. S. Malekzadeh, M.J. Pfisterer, B. Wilson, H. Na, M.K. Steehler, Otolaryngol. Head Neck 145, 530 (2011)

    Article  Google Scholar 

  26. C.E. Mendez-Probst, M. Vanjecek, H. Razvi, P.A. Cadieux, Urol. Res. 38, 497 (2010)

    Article  Google Scholar 

  27. S. Liu, C. Xu, Y. Wen, G. Li, J. Zhou, J. Roy Army Med. Corps 164, 172 (2018)

    Article  Google Scholar 

  28. N.R. Park, K.H. Kim, J.S. Mo, G.H. Yoon, Int. J. Impact Eng. 106, 73 (2017)

    Article  Google Scholar 

  29. V. Sorgato, M. Berger, C. Emain, C. Vever-Bizet, J. Dinten, G. Bourg-Heckly, A. Planat-Chretien, J. Biomed. Opt. 23, 096002 (2018)

    Article  ADS  Google Scholar 

  30. C. Shih, X. Qian, T. Ma, Z. Han, C. Huang, Q. Zhou, K.K. Shung, IEEE Trans. Med. Imaging 37, 1887 (2018)

    Article  Google Scholar 

  31. S. Gorgieva, T. Vuherer, V. Kokol, Mater. Sci. Eng. C Mater. 93, 226 (2018)

    Article  Google Scholar 

  32. S. Wang, S. Guan, W. Li, D. Ge, J. Xu, C. Sun, T. Liu, X. Ma, Mater. Sci. Eng. C Mater. 93, 890 (2018)

    Article  Google Scholar 

  33. J. Breeze, N. Hunt, I. Gibb, G. James, A. Hepper, J. Clasper, J. Forensic Leg. Med. 20, 296 (2013)

    Article  Google Scholar 

  34. T. Seto, H. Yamamoto, K. Takayama, A. Nakagawa, T. Tominaga, Rev. Sci. Instrum. 82, 055105 (2011)

    Article  ADS  Google Scholar 

  35. C. Cao, J. Zhao, G. Li, H. Ding, X. Jin, L. Song, IEEE Access 7, 172021 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions [PAPD], the Research Fund for Science and Technology Innovation of Xuzhou [KC16SY155]. The authors would like to express sincere appreciation to Prof. Benjamin Loret for his valuable comments and suggestions for improving the presentation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyun Zhao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, C., Li, G. & Zhao, J. Non-rigid cutting of soft tissue: physical evidences of complex mechanical interaction process of soft materials. Eur. Phys. J. Plus 135, 848 (2020). https://doi.org/10.1140/epjp/s13360-020-00860-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00860-4

Navigation