Skip to main content
Log in

A novel study of radiative flow involving micropolar nanoliquid from a shrinking/stretching curved surface including blood gold nanoparticles

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Cancer is the most deadly and dangerous of mainly its patients. The current research has suggested that the nanoparticle containing gold can treat and trounce it since these materials have a lofty atomic quantity that produces the temperature and guides to the handling of malignant tumors. The enthusiasm of current research deals with the steady 2D flow with heat diffusion of blood which transmits the micropolar nanoliquid with gold particles through a curved shrinking/stretched surface. The impact of radiation is also invoked. The coordinates in the curvilinear form are utilized to formulate the mathematical model of flow equations. The similarity technique is employed to transmute the leading PDEs into nonlinear ODEs. The altered nonlinear ODEs are solved through a bvp4c based on a 3-stage Lobatto technique. The numerical outcomes for the heat transport rate and the skin factor along with the micro-rotation, temperature, and velocity fields are presented via plots. The dual natures of solutions are observed for precise values of stretched/shrinking parameter. The physical enlightenments of the sketches are presented to distinguish the phenomena of blood flow by heat transfer in distinct conditions. The results suggest that the blood velocity increases due to suction in the first solution, and decreases in the second solution, while the micro-rotation upsurges and temperature declines in both solutions. Also, the nanofluid temperature uplifts due to the radiation in both solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. X. Huang, M.A. El-Sayed, Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 1, 13–28 (2010)

    Article  Google Scholar 

  2. P.K. Kumar, W. Paul, C.P. Sharma, Green synthesis of gold nanoparticles with Zingiber officinale extract: characterization and blood compatibility. Process Biochem. 46, 2007–2013 (2011)

    Article  Google Scholar 

  3. M. Hatami, J. Hatami, D.D. Ganji, Computer simulation of MHD blood conveying gold nanoparticles as a third grade non-Newtonian nanofluid in a hollow porous vessel. Comput. Meth. Prog. Biomed. 113, 632–641 (2014)

    Article  Google Scholar 

  4. K.S. Mekheimer, T. Elnaqeeb, M.A. El Kot, F. Alghamdi, Simultaneous effect of magnetic field and metallic nanoparticles on a micropolar fluid through an overlapping stenotic artery: blood flow model. Phys. Ess. 29, 272–283 (2016)

    Article  ADS  Google Scholar 

  5. T. Elnaqeeba, K.S. Mekheimer, F. Alghamdi, Cu-blood flow model through a catheterized mild stenotic artery with a thrombosis. Math. Biosci. 282, 135–146 (2016)

    Article  MathSciNet  Google Scholar 

  6. A. Rahbari, M. Fakour, A. Hamzehnezhad, M.A. Vakilabadi, D.D. Ganji, Heat transfer and fluid flow of blood with nanoparticles through porous vessels in a magnetic field; a quasi-one dimensional analytical approach. Math. Biosci. 283, 38–47 (2017)

    Article  MathSciNet  Google Scholar 

  7. Z. Shah, A. Khan, W. Khan, M.K. Alam, S. Islam, P. Kumam, P. Thounthong, Micropolar gold blood nanofluid flow and radiative heat transfer between permeable channels. Comput. Method Prog. Biomed. 186, 105197 (2020)

    Article  Google Scholar 

  8. B. Ghanbari, S. Kumar, R. Kumar, A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative. Chaos Solit. Fract. 133, 109619 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  9. M.K. Bansal, S. Lal, D. Kumar, S. Kumar, J. Singh, Fractional differential equation pertaining to an integral operator involving incomplete H-function in the kernel. Math. Meth. Appl. Sci. (2020). https://doi.org/10.1002/mma.6670

    Article  Google Scholar 

  10. S. Kumar, R. Kumar, C. Cattani, B. Samet, Chaotic behaviour of fractional predator-prey dynamical system. Chaos Solit. Fract. 135, 109811 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  11. J. Singh, D. Kumar, S. Kumar, An efficient computational method for local fractional transport equation occurring in fractal porous media. Comput. Appl. Math. 39, 137 (2020)

    Article  MathSciNet  Google Scholar 

  12. P. Veeresha, D.G. Prakasha, S. Kumar, A fractional model for propagation of classical optical solitons by using nonsingular derivative. Math. Meth. Appl. Sci. (2020). https://doi.org/10.1002/mma.6335

    Article  Google Scholar 

  13. A. Alshabanat, M. Jleli, S. Kumar, B. Samet, Generalization of Caputo-Fabrizio fractional derivative and applications to electrical circuits. Front. Phys. 20, 1–10 (2020). https://doi.org/10.3389/fphy.2020.00064

    Article  Google Scholar 

  14. S. Kumar, R. Kumar, R.P. Agarwal, B. Samet, A study of fractional Lotka-Volterra population model using Haar wavelet and Adams-Bashforth-Moulton methods. Math. Method Appl. Sci. (2020). https://doi.org/10.1002/mma.6297

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Kumar, K.S. Nisar, R. Kumar, C. Cattani, B. Samet, A new Rabotnov fractional-exponential function-based fractional derivative for diffusion equation under external force. Math. Method Appl. Sci. (2020). https://doi.org/10.1002/mma.6208

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Kumar, S. Ghosh, B. Samet, E.F.D. Goufo, An analysis for heat equations arises in diffusion process using new Yang-Abdel-Aty-Cattani fractional operator. Math. Method Appl. Sci. (2020). https://doi.org/10.1002/mma.6347

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Kumar, A. Ahmadian, R. Kumar, D. Kumar, J. Singh, D. Baleanu, M. Salimi, An Efficient numerical method for fractional SIR epidemic model of infectious disease by using Bernstein Wavelets. Math 8(4), 558 (2020)

    Article  Google Scholar 

  18. A.C. Eringen, Simple microfluids. Int. J. Eng. Sci. 2, 205–217 (1964)

    Article  MathSciNet  Google Scholar 

  19. A.C. Eringen, Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  20. G. Lukaszewicz, Micropolar Fluids: Theory and Applications (Springer, Berlin, 1999)

    Book  Google Scholar 

  21. J. Peddieson, R.P. McNitt, Boundary layer theory for micropolar fluid. Adv. Eng. Sci. 5, 405–426 (1970)

    Google Scholar 

  22. S.S. Chawla, Boundary layer growth of a micropolar fluid. Int. J. Eng. Sci. 10, 981–987 (1972)

    Article  Google Scholar 

  23. I.A. Hassanien, A. Shamardan, N.M. Moursy, R.S.R. Gorla, Flow and heat transfer in the boundary layer of a micropolar fluid on a continuous moving surface. Int. J. Numer. Meth. Heat Fluid Flow 9, 643–659 (1999)

    Article  Google Scholar 

  24. R. Nazar, N. Amin, D. Filip, I. Pop, Stagnation point flow of a micropolar fluid towards a stretching sheet. Int. J. Non-Linear Mech. 39, 1227–1235 (2004)

    Article  Google Scholar 

  25. A.R.M. Kasim, N.F. Mohammad, S. Shafie, Unsteady MHD mixed convection flow of a micropolar fluid along an inclined stretching plate. Heat Transf. Asian Res. 42, 89–99 (2013)

    Article  Google Scholar 

  26. B. Mohanty, S.R. Mishra, H.B. Pattanayak, Numerical investigation on heat and mass transfer effect of micropolar fluid over a stretching sheet through porous media. Alex. Eng. J. 54, 223–232 (2015)

    Article  Google Scholar 

  27. H. Waqas, S. Hussain, H. Sharif, S. Khalid, MHD forced convective flow of micropolar fluids past a moving boundary surface with prescribed heat flux and radiation. Br. J. Math. Comput. Sci. 21, 1–14 (2017)

    Article  Google Scholar 

  28. A. Hussanan, M.Z. Salleh, I. Khan, Microstructure and inertial characteristics of a magnetite ferrofluid over a stretching/shrinking sheet using effective thermal conductivity model. J. Mol. Liq. 255, 64–75 (2018)

    Article  Google Scholar 

  29. A. Zaib, R. Haq, Magnetohydrodynamics mixed convective flow driven through a static wedge including TiO2 nanomaterial with micropolar liquid: Similarity dual solutions via finite difference method. Proc. IMechE Part C J. Mech. Eng. Sci. 233, 5813–5825 (2019)

    Article  Google Scholar 

  30. T. Shabbir, M. Mushtaq, M.I. Khan, T. Hayat, Modeling and numerical simulation of micropolar fluid over a curved surface: Keller box method. Comput. Meth. Prog. Biomed. 187, 105220 (2020)

    Article  Google Scholar 

  31. J.C. Chato, Heat transfer to blood vessels. J. Biomech. Eng. 102, 110–118 (1980)

    Article  Google Scholar 

  32. E.E. Tzirtzilakis, N.G. Kafoussias, Biomagnetic fluid flow over a stretching sheet with non-linear temperature dependent magnetization. J. Appl. Math. Phys. (ZAMP) 54, 551–565 (2003)

    Article  MathSciNet  Google Scholar 

  33. Z. Abbas, M. Naveed, M. Sajid, Heat transfer analysis for stretching flow over a curved surface with magnetic field. J. Eng. Thermophys. 22(4), 337–345 (2013)

    Article  Google Scholar 

  34. S.H.M. Saleh, N. Md Arifin, R. Nazar, I. Pop, Unsteady micropolar fluid over a permeable curved stretching shrinking surface. Math. Prob. Eng. 2017, 1–13 (2017)

    Article  MathSciNet  Google Scholar 

  35. S. Srinivas, A. Vijayalakshmi, A.S. Reddy, Flow and heat transfer of gold-blood nanofluid in a porous channel with moving/stationary walls. J. Mech. 33(3), 395–404 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No. 2020/01/16436.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kottakkaran Sooppy Nisar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nisar, K.S., Khan, U., Zaib, A. et al. A novel study of radiative flow involving micropolar nanoliquid from a shrinking/stretching curved surface including blood gold nanoparticles. Eur. Phys. J. Plus 135, 842 (2020). https://doi.org/10.1140/epjp/s13360-020-00830-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00830-w

Navigation