Skip to main content
Log in

Plant Responses to a Daily Short-term Temperature Drop: Phenomenology and Mechanisms

  • REVIEWS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The review analyzes and generalizes literary data and the authors’ results demonstrating the principal difference in plant responses to low-temperature treatments of two different types: (1) long-term constant chilling and (2) short-term daily cooling (temperature drop). The literature indicating the specificity of plant responses to temperature drops as related to their parameters (intensity, duration, and timing in a diurnal cycle) is discussed. Environmental effects on plant responses to temperature drops are also considered. Peculiarity of responses to temperature drops of the plants representing the groups different in their relation to temperature and light are analyzed. Physiological and biochemical mechanisms of plant responses to temperature drops are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Levitt, J., Responses of Plants to Environmental Stresses, Vol. 1: Chilling, Freezing, and High Temperature Stresses, New York: Academic, 1980.

    Google Scholar 

  2. Theocharis, A., Clement, C., and Barka, E.A., Physiological and molecular changes in plants grown at low temperatures, Planta, 2012, vol. 235, p. 1091. https://doi.org/10.1007/s00425-012-1641-y

    Article  CAS  PubMed  Google Scholar 

  3. Myster, J. and Moe, R., Effect of diurnal temperature alternations on plant morphology in some greenhouse crops: a mini review, Sci. Hortic., 1995, vol. 62, p. 205. https://doi.org/10.1016/0304-4238(95)00783-P

    Article  Google Scholar 

  4. Moe, R. and Heins, R.D., Thermo- and photomorphogenesis in plants, in Advances in Floriculture Research: Report No. 6/2000, Strømme, E., Ed., Oslo: Spekter, 2000, p. 52.

    Google Scholar 

  5. Runkle, E., Controlling height with temperature drops, Greenhouse Prod. News, 2009, vol. 4, p. 50.

    Google Scholar 

  6. Moe, R., Morphogenetic effects of temperature and control of plant height by day/night temperature alternations, in The Scientific Basis of Poinsettia Production, Strømme, E., Ed., Ås: Agric. Univ. Norway, 1994, p. 65.

  7. Stavang, J.A., Hansen, M., and Olsen, J.E., Short term temperature drops do not enhance cold tolerance, Plant Growth Regul., 2008, vol. 55, p. 199. https://doi.org/10.1007/s10725-008-9274-7

    Article  CAS  Google Scholar 

  8. Shibaeva, T.G., Sherudilo, E.G., and Titov, A.F., Reaction of thermophilic and cold-resistant plants to daily short-term drops in temperature, Materialy Vserossiiskoi nauchnoi konferentsii, posvyashchennoi 125-letiyu Instituta fiziologii rastenii im. K.A. Timizryazeva, Rossiiskoi Akademii Nauk “Fundamental’nye i prikladnye problemy sovremennoi eksperimental’noi biologii rastenii” (Proc. All-Russ. Sci. Conf. Dedicated to the 125th Anniversary of the Timiryazev Institute of Plant Physiology, Russian Academy of Sciences “Fundamental and Applied Problems in Modern Experimental Plant Biology”), Moscow: Inst. Fiziol. Rast., Ross. Akad. Nauk, 2015, p. 737.

  9. Korkmaz, A. and Dufault, R.J., Developmental consequences of cold temperature stress at transplanting on seedling and field growth and yield. I. Watermelon, J. Am. Soc. Hortic. Sci., 2001, vol. 126, p. 404. https://doi.org/10.21273/JASHS.126.4.404

    Article  Google Scholar 

  10. Korkmaz, A. and Dufault, R.J., Developmental consequences of cold temperature stress at transplanting on seedling and field growth and yield. II. Muskmelon, J. Am. Soc. Hortic. Sci., 2001, vol. 126, p. 410. https://doi.org/10.21273/JASHS.126.4.410

    Article  Google Scholar 

  11. Korkmaz, A. and Dufault, R.J., Differential cold stress duration and frequency treatment effects on muskmelon seedling and field growth and yield, Eur. J. Hortic. Sci., 2004, vol. 69, p. 12.

    Google Scholar 

  12. Shibaeva, T.G., Ikkonen, E.N., Sherudilo, E.G., and Titov, A.F., Effects of a daily short-term temperature drop on chilling-sensitive and cold-resistant plants, Russ. J. Plant Physiol., 2019, vol. 66, no. 4, p. 530. https://doi.org/10.1134/S1021443719040125

    Article  CAS  Google Scholar 

  13. Shibaeva, T.G., Sherudilo, E.G., and Titov, A.F., Response of cucumber (Cucumis sativus L.) plants to prolonged permanent and short-term daily exposures to chilling, Russ. J. Plant Physiol., 2018, vol. 65, no. 2, p. 286. https://doi.org/10.1134/S1021443718020061

    Article  CAS  Google Scholar 

  14. Markovskaya, E.F., Sysoeva, M.I., Kharkina, T.G., and Sherudilo, E.G., Influence of a night temperature drop on the growth and cold tolerance of cucumber plants, Russ. J. Plant Physiol., 2000, vol. 47, no. 4, p. 445.

    CAS  Google Scholar 

  15. Markovskaya, E.F., Sysoeva, M.I., and Sherudilo, E.G., Kratkovremennaya gipotermiya i rastenie (Short Hypothermia and Plant), Petrozavodsk: Karel. Nauchn. Tsentr, Ross. Akad. Nauk, 2013.

  16. Grimstad, S.O., Low-temperature pulse affects growth and development of young cucumber and tomato plants, J. Hortic. Sci., 1995, vol. 70, p. 75. https://doi.org/10.1080/14620316.1995.11515275

    Article  Google Scholar 

  17. Shibaeva, T.G., Sherudilo, E.N., Ikkonen, E.N., and Titov, A.F., Responses of young cucumber plants to a diurnal temperature drop at different times of day and night, Acta Agric. Slov., 2018, vol. 111, p. 567. https://doi.org/10.14720/aas.2018.111.3.05

    Article  Google Scholar 

  18. Ikkonen, E.N., Shibaeva, T.G., and Titov, A.F., Water use efficiency in Cucumis sativus L. in response to daily short-term temperature drop, J. Agric. Sci., 2015, vol. 7, p. 208. https://doi.org/10.5539/jas.v7n11p208

    Article  Google Scholar 

  19. Sysoeva, M.I., Markovskaya, E.F., Kharkina, T.G., and Sherudilo, E.G., Temperature drop, dry matter accumulation and cold resistance of young cucumber plants, Plant Growth Regul., 1999, vol. 28, p. 89. https://doi.org/10.1023/A:1006243230411

    Article  CAS  Google Scholar 

  20. Stavang, J.A., Junttila, O., Moe, R., and Olsen, J., Differential temperature regulation of GA metabolism in light and darkness in pea, J. Exp. Bot., 2007, vol. 58, p. 3061. https://doi.org/10.1093/jxb/erm163

    Article  CAS  PubMed  Google Scholar 

  21. Dufault, R.J. and Melton, R.R., Cyclic cold stress before transplanting influence tomato seedling growth, but not fruit earliness, fresh-market yield, or quality, J. Am. Soc. Hortic. Sci., 1990, vol. 115, p. 559. https://doi.org/10.21273/JASHS.115.4.559

    Article  Google Scholar 

  22. Shibaeva, T.G., Sherudilo, E.G., and Titov, A.F., Plant responses to short daily drops in temperature at different periods of the day and night, Tr. Karel. Nauchn. Tsentra, Ross. Akad. Nauk, Ser. Eksp. Biol., 2020, no. 3, p. 60. https://doi.org/10.17076/eb1088

  23. Grimstad, S.O., The effect of a daily low temperature pulse on growth and development of greenhouse cucumber and tomato plants during propagation, Sci. Hortic., 1993, vol. 53, p. 53. https://doi.org/10.1016/0304-4238(93)90137-F

    Article  Google Scholar 

  24. Moe, R. and Mortensen, L.M., Thermomorphogenesis in pot plants, Acta Hortic., 1992, vol. 305, p. 19. https://doi.org/10.17660/ActaHortic.1992.305.2

  25. Grindal, G. and Moe, R., Effects of temperature-drop and a short dark interruption on stem elongation and flowering in Begonia × hiemalis Fotsch., Sci. Hortic., 1994, vol. 57, p. 123. https://doi.org/10.1016/0304-4238(94)90040-X

    Article  Google Scholar 

  26. Grindal, G. and Moe, R., Growth rhythm and temperature DROP, Acta Hortic., 1995, vol. 378, p. 47. https://doi.org/10.17660/ActaHortic.1995.378.6

  27. Bakken, A.K. and Moe, R., Height and quality control in Christmas begonia by growth-retarding temperature regimes, Acta Agric. Scand.,Sect. B, 1995, vol. 45, p. 283. https://doi.org/10.1080/09064719509413117

    Article  Google Scholar 

  28. Vogelezang, J.V.M., The timing of low temperature treatments on stem elongation as affected by lighting strategies, Acta Hortic., 1997, vol. 435, p. 47. https://doi.org/10.17660/ActaHortic.1997.435.3

  29. Mortensen, L.M. and Moe, R., Effects of various day and night temperature treatments on the morphogenesis and growth of some greenhouse and bedding plant species, Acta Hortic., 1992, vol. 327, p. 77. https://doi.org/10.17660/ActaHortic.1992.327.9

  30. Ihlebekk, H., Eilertsen, S., Junttila, O., Grindal, G., and Moe, R., Control of plant height in Campanula isophyl-la by temperature alternations; involvement of GAS, Acta Hortic., 1995, vol. 394, p. 347. https://doi.org/10.17660/ActaHortic.1995.394.38

  31. Cuijpers, L.H.M. and Vogelezang, J.V.M., DIF and temperature drop for short-day pot plants, Acta Hortic., 1992, vol. 327, p. 25. https://doi.org/10.17660/ActaHortic.1992.327.3

  32. Tutty, J.R., Hicklenton, P.R., Kristie, D.N., and McRae, K.B., The influence of photoperiod and temperature on the kinetics of stem elongation in Dendranthema grandiflorum,J. Am. Soc. Hortic. Sci., 1994, vol. 119, p. 138. https://doi.org/10.21273/JASHS.119.2.138

    Article  Google Scholar 

  33. Ueber, E. and Hendriks, L., Effects of intensity, duration and the time of a temperature drop on growth and flowering of Euphorbia pulcherrima Willd. ex Klotzsch, Acta Hortic., 1992, vol. 327, p. 33. https://doi.org/10.17660/ActaHortic.1992.327.4

  34. Ueber, E. and Hendriks, L., Effect of a short duration temperature drop on water status and elongation growth of ornamental plants, Acta Hortic., 1997, vol. 435, p. 25. https://doi.org/10.17660/ActaHortic.1997.435.1

  35. Ueber, E. and Hendriks, L., Intensity effects of a temperature drop on pelargoniums, Acta Hortic., 1995, vol. 378, p. 34. https://doi.org/10.17660/ActaHortic.1995.378.3

  36. Sherudilo, E.G., Shibaeva, T.G., Ikkonen, E.N., and Titov, A.F., Comparative study of plant physiological responses to long-term and short-term daily exposures to low temperature in the presence of protein-synthesis inhibitors, Biol. Bull. Rev., 2020, vol. 10, no. 1, p. 71. https://doi.org/10.1134/S2079086420010077

    Article  Google Scholar 

  37. Ikkonen, E.N., Shibaeva, T.G., and Titov, A.F., Influence of daily short-term temperature drops on respiration to photosynthesis ratio in chilling-sensitive plants, Russ. J. Plant Physiol., 2018, vol. 65, p. 78. https://doi.org/10.1134/S1021443718010041

    Article  CAS  Google Scholar 

  38. Koscielniak, J. and Biesaga-Koscielniak, J., The effect of short warm breaks during chilling on water status, intensity of photosynthesis of maize seedlings and final grain yield, J. Agron. Crop Sci., 2000, vol. 184, p. 1. https://doi.org/10.1046/j.1439-037x.2000.00365.x

    Article  Google Scholar 

  39. Ikkonen, E.N., Shibaeva, T.G., Sysoeva, M.I., and Sherudilo, E.G., Stomatal conductance in Cucumis sativus upon short-term and long-term exposures to low temperatures, Russ. J. Plant Physiol., 2012, vol. 59, p. 696.

    Article  CAS  Google Scholar 

  40. Ikkonen, E.N., Shibaeva, T.G., and Titov, A.F., Response of the photosynthetic apparatus in cucumber leaves to daily short-term temperature drops, Russ. J. Plant Physiol., 2015, vol. 62, p. 494. https://doi.org/10.1134/S1021443715040093

    Article  CAS  Google Scholar 

  41. Sherudilo, E.G. and Shibaeva, T.G., Effect of short daily temperature drops on cold-resistance of different age leaves, Tr. Karel. Nauchn. Tsentra, Ross. Akad. Nauk, Ser. Eksp. Biol., 2018, no. 6, p. 115. https://doi.org/10.17076/eb821

  42. Moe, R., Willumsen, K., Ihlebekk, I.H., Stupa, A.I., Glomsrud, N.M., and Mortensen, L.M., DIF and temperature drop responses in SDP and LDP, a comparison, Acta Hortic., 1995, vol. 378, p. 27. https://doi.org/10.17660/ActaHortic.1995.378.2

  43. Shibaeva, T.G., Ikkonen, E.N., Sherudilo, E.G., and Titov, A.F., Specific response of plants to daily temperature drops depending on their intensity and duration, Tr. Karel. Nauchn. Tsentra, Ross. Akad. Nauk, Ser. Eksp. Biol., 2018, no. 12, p. 20. https://doi.org/10.17076/eb884

  44. Drozdov, S.N., Kurets, V.K., and Titov, A.F., Termorezistentnost’ aktivno vegetiruyushchikh rastenii (Thermal Resistivity of Actively Vegetating Plants), Leningrad: Nauka, 1984.

  45. Drozdov, S.N., Titov, A.F., Talanova V.V., Kritenko S.P., Sherudilo, E.G., and Akimova, T.V., The effect of temperature on cold and heat resistance of growing plants. I. Chilling-sensitive species, J. Exp. Bot., 1984, vol. 35, p. 1595. https://doi.org/10.1093/jxb/35.11.1595

    Article  Google Scholar 

  46. Titov, A.F., Drozdov, S.N., Akimova, T.V., and Talanova, V.V., The response of soybean plants to temperature: limits of temperature zones, Fiziol. Rast., 1987, vol. 34, p. 350.

    Google Scholar 

  47. Holaday, A.S., Mahan, J.R., and Payton, P., Molecular biology and physiology: effects of chilling temperatures on photosynthesis, J. Cotton Sci., 2016, vol. 20, p. 220.

    CAS  Google Scholar 

  48. Bradow, J.M., Cotton cultivar responses to suboptimal postemergent temperatures, Crop Sci., 1991, vol. 31, p. 1595. https://doi.org/10.2135/cropsci1991.0011183X00-3100-060043x

    Article  Google Scholar 

  49. Sofalian, O., Azimy, S., Jahanbakhsh, S., Khomari, S., and Dezhsetan, S., Evaluating genetic diversity of chilling stress in cotton genotypes, Plant Breed. Seed Sci., 2013, vol. 68, p. 77. https://doi.org/10.2478/v10129-011-0082-2

    Article  Google Scholar 

  50. Moe, R., Fjeld, T., and Mortensen, L., Stem elongation and keeping quality in poinsettia (Euphorbia pulcherrim-a Willd.) as affected by temperature and supplementary lighting, Sci. Hortic., 1992, vol. 50, p. 127. https://doi.org/10.1016/S0304-4238(05)80015-9

    Article  Google Scholar 

  51. Moe, R., Glomsrud, N., Bratberg, I., and Valso, S., Control of height in poinsettia by temperature drop and graphical tracking, Acta Hortic., 1992, vol. 327, p. 41. https://doi.org/10.17660/ActaHortic.1992.327.5

  52. Erwin, J.E. and Heins, R.D., Thermomorphogenetic responses in stem and leaf development, Hortic. Sci., 1995, vol. 30, p. 940. https://doi.org/10.21273/HORTSCI.30.5.940

    Article  Google Scholar 

  53. Lecharny, A., Schwall, M., and Wagner, E., Stem extension rate in light-grown plants, Plant Physiol., 1985, vol. 79, p. 625. https://doi.org/10.1104/pp.79.3.625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bertram, L. and Karlsen, P., Patterns in stem elongation rate in chrysanthemum and tomato plants in relation to irradiance and day/night temperature, Sci. Horti-c., 1994, vol. 58, p. 139. https://doi.org/10.1016/0304-4238(94)90134-1

    Article  Google Scholar 

  55. Gertsson, U., Influence of temperature on shoot elongation in young tomato plants, Acta Hortic., 1992, vol. 327, p. 71. https://doi.org/10.17660/ActaHortic.1992.327.8

  56. Sysoeva, M.I., Patil Grindal, G., Sherudilo, E.G., Torre, S., Markovskaya, E.F., and Moe, R., Effect of temperature drop and photoperiod on cold resistance in young cucumber plants—involvement of phytochrome B, Plant Stress, 2008, vol. 2, p. 84.

    Google Scholar 

  57. Patterson, B.D. and Reid, M.S., Genetic and environmental influences on the expression of chilling injury, in Chilling Injury of Horticultural Crops, Wang, C.Y., Ed., Boca Raton, FL: CRC Press, 1990, p. 87.

    Google Scholar 

  58. Minorsky, P.V., Temperature sensing by plants: a review and hypothesis, Plant Cell Environ., 1989, vol. 12, p. 119. https://doi.org/10.1111/j.1365-3040.1989.tb01924.x

    Article  CAS  Google Scholar 

  59. Minorsky, P.V. and Spanswick, R.M., Electrophysiological evidence for a role for calcium in temperature sensing by roots of cucumber seedlings, Plant Cell Environ., 1989, vol. 12, p. 137. https://doi.org/10.1111/j.1365-3040.1989.tb01925.x

    Article  CAS  Google Scholar 

  60. Plieth, C., Hansen, U.P., Knight, H., and Knight, M.R., Temperature sensing by plants: the primary characteristics of signal perception and calcium response, Plant J., 1999, vol. 18, p. 491. https://doi.org/101046/j.1365-313X.1999.00471.x

    Article  CAS  Google Scholar 

  61. Nordin Henriksson, K. and Trewavas, A.J., The effect of short-term low-temperature treatments on gene expression in Arabidopsis correlates with changes in intracellular Ca2+ levels, Plant Cell Environ., 2003, vol. 26, p. 485. https://doi.org/10.1046/j.1365-3040.2003.00979.x

    Article  Google Scholar 

  62. Zarka, D.G., Vogel, J.T., Cook, D., and Thomashow, M.F., Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature, Plant Physiol., 2003, vol. 133, p. 910. https://doi.org/10.1104/pp.103.027169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shibaeva, T.G., Sherudilo, E.G., and Titov, A.F., The effect of cooling rate on cucumber Cucumis sativus L. response to a daily short-term temperature drop, Tr. Karel. Nauchn. Tsentra, Ross. Akad. Nauk, Ser. Eksp. Biol., 2016, no. 7, p. 121. https://doi.org/10.17076/eb489

  64. Shibaeva, T.G., Ikkonen, E.N., Sherudilo, E.G., and Titov, A.F., Specific responses of cucumber Cucumis sativus L. hybrids with different light requirements to daily short-term temperature drops, Tr. Karel. Nauchn. Tsentra, Ross. Akad. Nauk, Ser. Eksp. Biol., 2016, no. 6, p. 56. https://doi.org/10.17076/eb287

  65. Ikkonen, E.N., Shibaeva, T.G., and Titov, A.F., The role of light in cucumber plant response to a diurnal short-term temperature drop, J. Stress Physiol. Biochem., 2017, vol. 13, p. 35.

    CAS  Google Scholar 

  66. Stavang, J.A., Pettersen, R.I., Wendell, M., Solhaug, K.A., Junttila, O., Moe, R., and Olsen, J.E., Thermoperiodic growth control by gibberellins does not involve changes in photosynthetic or respiratory capacities in pea, J. Exp. Bot., 2010, vol. 61, p. 1015. https://doi.org/10.1093/jxb/erp366

    Article  CAS  PubMed  Google Scholar 

  67. Spiridonova, E.A., Sysoeva, M.I., and Sherudilo, E.G., Influence of daily short temperature drops and photoperiod on the development of ornamental plants, Uch. Zap. Petrogr. Gos. Univ., 2010, no. 4, p. 18.

  68. Oden, P.C. and Heide O.M., Quantification of gibberellins and indoleacetic acid in Begonia leaves: relationship with environment, regeneration and flowering, Physiol. Plant., 1989, vol. 76, p. 500. https://doi.org/10.1111/j.1399-3054.1989.tb05469.x

    Article  CAS  Google Scholar 

  69. Zeevaart, J.A.D., Talon, M., and Wilson, T.M., Stem growth and gibberellin metabolism in spinach in relation to photoperiod, in Gibberellins, Takahashi, N., Phinney, B.O., and MacMillan, J., Eds. Springer-Verlag, 1991, p. 273.

    Google Scholar 

  70. Ikkonen, E.N., Shibaeva, T.G., Rosenquist, E., and Ottosen, C.-O., Daily temperature drop prevents inhibition of photosynthesis in tomato plants under continuous light, Photosynthetica, 2015, vol. 53, p. 389. https://doi.org/10.1007/s11099-015-0115-4

    Article  CAS  Google Scholar 

  71. Shibaeva, T.G. and Sherudilo, E.G., Immediate and delayed effects of diurnal temperature drops on growth and reproductive development of tomato plants grown under continuous lighting, Russ. J. Plant Physiol., 2015, vol. 62, no. 3, p. 328. https://doi.org/10.1134/S1021443715030176

    Article  CAS  Google Scholar 

  72. Shibaeva, T.G., Markovskaya, E.F., Ikkonen, E.N., and Sherudilo, E.G., Control of continuous irradiation injury on tomato plants with a temperature drop: effectiveness evaluation, Russ. Agric. Sci., 2015, vol. 41, no. 6, p. 419.

    Article  Google Scholar 

  73. Shibaeva, T.G., Sherudilo, E.G., Ikkonen, E.N., and Titov, A.F., Impact of water availability on responses of Cucumis sativus L. plants to a short-term daily temperature drop, Russ. J. Plant Physiol., 2019, vol. 66, no. 3, p. 414. https://doi.org/10.1134/S1021443719030130

    Article  CAS  Google Scholar 

  74. Shibaeva, T.G. and Titov, A.F., Comparative assessment of short temperature drops and periodic drought to growth control of cucumber plants (Cucumis sativus L.), S-kh.Biol., 2019, vol. 54, p. 528. https://doi.org/10.15389/agrobiology.2019.3.528rus

    Article  Google Scholar 

  75. Carvalho, S.M.P., van Noort, F., Postma, R., and Heuvelink, E., Possibilities for Producing Compact Floricultural Crops: Report 173, Wageningen: Wageningen Univ. Res. Greenhouse Hortic., 2008.

    Google Scholar 

  76. Sysoeva, M.I., Sherudilo, E.G., Markovskaya, E.F., Obshatko, L.A., and Matveeva, E.M., Temperature drop as a tool for cold tolerance increment in plants, Plant Growth Regul., 2005, vol. 46, p. 189. https://doi.org/10.1007/s10725-005-7357-2

    Article  CAS  Google Scholar 

  77. Markovskaya, E.F., Sysoeva, M.I., and Sherudilo, E.G., The effect of daily exposure to low hardening temperature on plant vital activity, Russ. J. Dev. Biol., 2008, vol. 39, no. 5, p. 261.

    Article  Google Scholar 

  78. Hendriks, L., Ludolph, D., and Menne, A., Influence of different heating strategies on morphogenesis and flowering of ornamentals, Acta Hortic., 1992, vol. 305, p. 9. https://doi.org/10.17660/ActaHortic.1992.305.1

  79. Jensen, E., Eilertsen, S., Ernstsen, A., Junttila, O., and Moe, R., Thermoperiodic control of stem elongation and endogenous gibberellins in Campanula isophylla,J. Plant Growth Regul., 1996, vol. 15, p. 167. https://doi.org/10.1007/BF0019058

    Article  CAS  Google Scholar 

  80. Grindal, G., Ernstsen, A., Reid, J.B., Junttila, O., Lindgard, B., and Moe, R., Endogenous gibberellin A1 levels control thermoperiodic stem elongation in Pisu-m sativum,Physiol. Plant., 1998, vol. 102, p. 523. https://doi.org/10.1034/j.1399-3054.1998.1020406.x

    Article  CAS  Google Scholar 

  81. Grindal, G., Junttila, O., Reid, J.B., and Moe, R., The response to gibberellin in Pisum sativum grown under alternating day and night temperature, J. Plant Growth Regul., 1998, vol. 17, p. 161. https://doi.org/10.1007/PL00007030

    Article  CAS  Google Scholar 

  82. Moe, R. and Grindal, G., Control of stem elongation: phytochrome and gibberellins involvement, J. Kor. Soc. Hortic. Sci., 2000, vol. 41, p. 662.

    CAS  Google Scholar 

  83. Patil, G.G., Alm, V., Moe, R., and Junttila, O., Interaction between phytochrome B and gibberellins in thermoperiodic responses of cucumber, J. Am. Soc. Hortic. Sci., 2003, vol. 128, p. 642. https://doi.org/10.21273/JASHS.128.5.0642

    Article  CAS  Google Scholar 

  84. Runkle, R. and Blanchard, M., Temperature integration, Greenhouse Prod. News, 2018, vol. 2.

    Google Scholar 

  85. Ikkonen, E.N., Shibaeva, T.G., Sherudilo, E.G., and Titov, A.F., Effect of short-term temperature drop on effective use of light energy in photosynthesis of the cucumber plants, Tr. Karel. Nauchn. Tsentra, Ross. Akad. Nauk, Ser. Eksp. Biol., 2016, no. 6, p. 49. https://doi.org/10.17076/eb319

  86. Ikkonen, E.N., Grabelnykh, O.I., Sherudilo, E.G., and Shibaeva, T.G., Salicylhydroxamic acid-resistant and sensitive components of respiration in chilling-sensitive plants subjected to a daily short-term temperature drop, Russ. J. Plant Physiol., 2020, vol. 67, p. 60. https://doi.org/10.1134/S1021443719050066

    Article  CAS  Google Scholar 

  87. Ikkonen, E.N., Shibaeva, T.G., Sherudilo, E.G., and Titov, A.F., Response of winter wheat seedlings respiration to long-term cold exposure and short-term daily temperature drops, Russ. J. Plant Physiol., 2020, vol. 67, no. 3, p. 538. https://doi.org/10.1134/S1021443720020065

    Article  CAS  Google Scholar 

  88. Markovskaya, E.F., Sysoeva, M.I., Sherudilo, E.G., and Topchieva, L.V., Differential gene expression in cucumber plants in response to brief daily cold treatments, Russ. J. Plant Physiol., 2007, vol. 54, no. 5, p. 607.

    Article  CAS  Google Scholar 

  89. Lavrova, V.V., Sysoeva, M.I., Sherudilo, E.G., Topchieva, L.V., and Matveeva, E.M., Expression of ci7 gene in potato leaves affected by daily temperature drops, Tr. Karel. Nauchn. Tsentra, Ross. Akad. Nauk, Ser. Eksp. Biol., 2011, no. 3, p. 73.

  90. Markovskaya, E.F., Sherudilo, E.G., Ripatti, P.O., and Sysoeva, M.I., The role of lipids in the resistance of cucumber cotyledon leaves to constant and short-term periodic action of low hardening temperature, Tr. Karel. Nauchn. Tsentra, Ross. Akad. Nauk, Ser. Eksp. Biol., 2009, no. 3, p. 67.

  91. Lavrova, V.V., Sysoeva, M.I., and Matveeva, E.M., Fatty acid composition of lipids in potato leaves affected by periodic and prolonged hypothermia, Tr. Karel. Nauchn. Tsentra, Ross. Akad. Nauk, Ser. Eksp. Biol., 2012, no. 2, p. 91.

  92. Bergstrand, K.-J.I., Methods for growth regulation of greenhouse produced ornamental pot- and bedding plants—a current review, Folia Hortic., 2017, vol. 29, p. 63. https://doi.org/10.1515/fhort-2017-0007

    Article  Google Scholar 

  93. Körner, O. and Challa, H., Energy saving climate control regime for cut chrysanthemum, Acta Hortic., 2004, vol. 633, p. 489. https://doi.org/10.17660/ActaHortic.2004.633.61

  94. Rijsdijk, A.A. and Vogelezang, J.V.M., Temperature integration on a 24-hour base: a more efficient climate control strategy, Acta Hortic., 2000, vol. 519, p. 163. https://doi.org/10.17660/ActaHortic.2000.519.16

  95. Elings, A., Kempkes, F.L.K., Kaarsemaker, R.C., Ruijs, M.N.A., van de Braak, N.J., and Dueck, T.A., The energy balance and energy-saving measures in greenhouse tomato cultivation, Acta Hortic., 2005, vol. 691, p. 67. https://doi.org/10.17660/ActaHortic.2005.691.5

  96. Ottosen, C.-O., Rosenqvist, E., Aaslyng, J.M., and Jakobsen, L., Dynamic climate control in combination with average temperature control saves energy in ornamentals, Acta Hortic., 2004, vol. 691, p. 133. https://doi.org/10.17660/ActaHortic.2005.691.14

  97. Lopez, R.G. and Runkle, E.S., Growing your crops above their base temperature, Greenhouse Grower, 2014, vol. 6, p. 53.

    Google Scholar 

  98. Los, D.A. and Murata, N., Membrane fluidity and its roles in the perception of environmental signals, Biochem. Biophys. Acta,Biomembr., 2004, vol. 1666, p. 142.

    Article  CAS  Google Scholar 

  99. Ruelland, E., Vaultier, M.N., Zachowski, A., and Hurry, V., Cold signaling and cold acclimation in plants, Adv. Bot. Res., 2009, vol. 49, p. 35.

    Article  CAS  Google Scholar 

  100. Markovskaya, E.F. and Shibaeva, T.G., Low temperature sensors in plants: hypotheses and assumptions, Bio-l. Bull. (Moscow) 2017, vol. 44, no. 2, p. 150. https://doi.org/10.1134/S1062359017020145

    Article  Google Scholar 

Download references

Funding

The reported study was funded by the Russian Foundation for Basic Research (project no. 1914-50502) and carried out in accordance with the State Task for the Karelian Research Center, Russian Academy of Sciences (no. 0218-2019-0074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Shibaeva.

Ethics declarations

The authors declare that they have no conflicts of interest and that they contributed equally to the work. The article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Aver’yanov

Abbreviations: temperature drop—diurnal short-time decrease in temperature; PSA—photosynthetic apparatus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titov, A.F., Shibaeva, T.G., Ikkonen, E.N. et al. Plant Responses to a Daily Short-term Temperature Drop: Phenomenology and Mechanisms. Russ J Plant Physiol 67, 1003–1017 (2020). https://doi.org/10.1134/S1021443720060187

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443720060187

Keywords:

Navigation