Skip to main content
Log in

Physiological and Proteomic Characterization of the Elevated Temperature Effect on Sunflower (Helianthus annuus L.) Primary Leaves

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

This work examines the effect of increasing environmental temperatures, resulting from the ongoing global climate change, on the primary leaves of sunflower (Helianthus annuus L.). To do so, we examined physiological markers that are commonly used to monitor leaf development: specific leaf mass (SLM), leaf area, protein and photosynthetic pigment contents, net photosynthesis rate (PN), stomatal conductance (gs) transpiration and hydrogen peroxide (H2O2) content in the primary leaves of 42-day-old plants grown under standard diurnal and nocturnal temperatures (23 and 19°C, day/night), and under higher temperatures (33 and 29°C, day/night). Then, a proteomic approach was used to evaluate molecular alterations, at the protein level, between the two grown conditions. A total of 598387 raw spectra were obtained, yielding a total of 2343 identified protein sequences. Protein profiles were consistent with differences in protein expression between plants grown under the two temperature conditions. Interestingly, 619 (26.4%) of the identified proteins, mainly categorized in four functional groups (1-antioxidant, 2-stress and defense, 3-energy and metabolism-related, and 4-hormonal regulation proteins), exhibited increased expression in response to higher growth temperatures. These molecular differences detected in primary leaves at elevated temperatures could indicate a greater tolerance of sunflower plants to these stress conditions. This work provides a solid basis for elucidating their role and explaining the sunflower adaptive mechanisms to the increasing environmental temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Wahid, A., Gelani, S., Ashraf, M., and Foolad, M.R., Heat tolerance in plants: An overview, Environ. Exp. Bot., 2007, vol. 61, p. 199.

    Article  Google Scholar 

  2. Li, X., Lawas, L.M.F., Malo, R., Glaubitz, U., Erban, A., Mauleon, R., Heuer, S., Zuther, E., Kopka, J., Hincha, D.K., and Jagadish, K.S.V., Metabolic and transcriptomic signatures of rice floral organs reveal sugar starvation as a factor in reproductive failure under heat and drought stress, Plant Cell Environ., 2015, vol. 38, p. 2171.

    Article  CAS  Google Scholar 

  3. Wang, W.X., Vinocur, B., Shoseyov, O., and Altman, A., Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response, Trends Plant Sci., 2004, vol. 9, p. 244.

    Article  CAS  Google Scholar 

  4. Guy, C., Molecular responses of plants to cold shock and cold acclimation, J. Mol. Microbiol. Biotechnol., 1999, vol. 1, p. 231.

    CAS  PubMed  Google Scholar 

  5. Bita, C.E. and Gerats, T., Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops, Front. Plant Sci., 2013, vol. 4, p. 273.

    Article  Google Scholar 

  6. Mittler, R., Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci., 2002, vol. 7, p. 405.

    Article  CAS  Google Scholar 

  7. Vilverta, E., Lanaa, M., Zandera, P., and Siebera, S., Multi-model approach for assessing the sunflower food value chain in Tanzania, Agric. Syst., 2018, vol. 159, p. 103.

    Article  Google Scholar 

  8. Hewitt, E.J., Sand and Water Culture Methods Used in the Study of Plant Nutrition, Farnham Royal, East Malling Tech.: Commonwealth Bureau of Horticultural and Plantation Crops, 1966, no. 22.

  9. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein–dye binding, Anal. Biochem., 1976, vol. 72, p. 248.

    Article  CAS  Google Scholar 

  10. Cabello, P., De la Haba, P., González-Fontes, A., and Maldonado, J.M., Induction of nitrate reductase, nitrite reductase, and glutamine synthetase isoforms in sunflower cotyledons as affected by nitrate, light, and plastid integrity, Protoplasma, 1988, vol. 201, p. 1.

    Article  Google Scholar 

  11. Mukherjee, S.P. and Choudhuri, M.A., Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings, Physiol. Plant., 1983, vol. 58, p. 166.

    Article  CAS  Google Scholar 

  12. Wang, W., Vignani, R., Scali, M., and Cresti, M., A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis, Electrophoresis, 2006, vol. 27, p. 2782.

    Article  CAS  Google Scholar 

  13. Ramagli, L.S. and Rodríguez, L.V., Quantitation of microgram amounts of protein in two-dimensional polyacrylamide-gel electrophoresis sample buffer electrophoresis, Electrophoresis, 1985, vol. 6, p. 559.

    Article  CAS  Google Scholar 

  14. López-Hidalgo, C., Guerrero-Sánchez, V.M., Gómez-Gálve, I., Sánchez-Lucas, R., Castillejo-Sánchez, M.A., Maldonado-Alconada, A.M., Valledor, L., and Jorrín-Novo, J.V., A Multi-Omics analysis pipeline for the metabolic pathway reconstruction in the orphan species Quercus ilex,Front. Plant Sci., 2018, vol. 9, p. 931.

  15. De la Haba, P., De la Mata, L., Molina, E., and Agüera, E., High temperature promotes early senescence in primary leaves of sunflower (Helianthus a-nnuus L.) plants, Can. J. Plant Sci., 2014, vol. 94, p. 659.

    Article  CAS  Google Scholar 

  16. Mohammed, A.R. and Tarpley, L., Effects of high night temperature and spikelet position on yield-related parameters of rice (Oryza sativa L.) plants, Eur. J. Agron., 2010, vol. 33, p. 117.

    Article  Google Scholar 

  17. Greer, D.H. and Weston, C., Heat stress affects flowering, berry growth, sugar accumulation and photosynthesis of Vitis vinifera cv. Semillon grapevines grown in a controlled environment, Funct. Plant Biol., 2010, vol. 37, p. 206.

    Article  Google Scholar 

  18. Han, F., Chen, H., Li, X.J., Yang, M.F., Liu, G.S., and Shen, S., A comparative proteomic analysis of rice seedlings under various high-temperature stresses, Biochi-m. Biophys. Acta, 2009, vol. 1794, p. 1625.

    Article  CAS  Google Scholar 

  19. Gong, H., Chen, G., Li, F., Wang, X., Hu, Y., and Bi, Y., Involvement of G6PDH in heat stress tolerance in the calli from Przewalskia tangutica and Nicotiana tabacum,Biol. Plant., 2012, vol. 56, p. 422.

    Article  CAS  Google Scholar 

  20. Suzuki, N., Koussevitzky, S., Mittler, R., and Miller, G., ROS and redox signalling in the response of plants to abiotic stress, Plant Cell Environ., 2012, vol. 35, p. 259.

    Article  CAS  Google Scholar 

  21. Ding, N., Wang, A., Zhang, X., Wu, Y., Wang, R., Cui, H., Huang, R., and Luo, Y., Identification and analysis of glutathione S-transferase gene family in sweet potato reveal divergent GST-mediated networks in aboveground and underground tissues in response to abiotic stresses, BMC Plant Biol., 2017, vol. 17, p. 225.

    Article  Google Scholar 

  22. Jung, Y.J., Melencion, S.M., Lee, E.S., Park, J.H., Alinapon, C.V., Oh, H.T., Yun, D.J., Chi, Y.H., and Lee, S.Y., Universal stress protein exhibits a redox-dependent chaperone function in Arabidopsis and enhances plant tolerance to heat shock and oxidative stress, Front. Plant Sci., 2015, vol. 21, p. 1141.

    Google Scholar 

  23. Gupta, R., Lee, S.J., Min, C.W., Kim, S.W., Park, K.H., Bae, D.W., Lee, B.W., Agrawal, G.K., Rakwal, R., and Kim, S.T., Coupling of gel-based 2-DE and 1-DE shotgun proteomics approaches to dig deep into the leaf senescence proteome of Glycine max,J. Prot., 2016, vol. 148, p. 65.

    Article  CAS  Google Scholar 

  24. Wahid, A. and Close, T.J., Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves, Biol. Plant., 2007, vol. 51, p. 104.

    Article  CAS  Google Scholar 

  25. Bernard, S.M., Møller, A.L., Dionisio, G., Kichey, T., Jahn, T.P., Dubois, F., Baudo, M., Lopes, M.S., Tercé-Laforgue, T., Foyer, C.H., Parry, M.A., Forde, B.G., Araus, J.L., Hirel, B., Schjoerring, J.K., and Habash, D.Z., Gene expression, cellular localization and function of glutamine synthetase isozymes in wheat (Triticum aestiv-um L.), Plant Mol. Biol., 2008, vol. 67, p. 89.

    Article  CAS  Google Scholar 

  26. Zhang, X., Takano, T., and Liu, S., Identification of a mitochondrial ATP synthase small subunit gene (RMtA-TP6) expressed in response to salt and osmotic stresses in rice (Oryza sativa L.), J. Exp. Bot., 2006, vol. 57, p. 193.

    Article  CAS  Google Scholar 

  27. Hoshida, H., Tanaka, Y., Hibino, T., Hayashi, Y., Tanaka, A., Takabe, T., and Takabe, T., Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase, Plant Mol. Biol., 2000, vol. 43, p. 103.

    Article  CAS  Google Scholar 

  28. Wingler, A., Lea, P.L., Quick, P.W., and Leegood, R.C., Photorespiration: metabolic pathways and their role in stress protection, Phil. Trans. R. Soc., 2000, vol. 355, p. 1517.

    Article  CAS  Google Scholar 

  29. Roje, S., S-Adenosyl-L-methionine: beyond the universal methyl group donor, Phytochemistry, 2006, vol. 67, p. 1686.

    Article  CAS  Google Scholar 

  30. Kende, H., Ethylene biosynthesis, Annu. Rev. Plant Physiol. Mol. Biol., 1993, vol. 44, p. 283.

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful to the University of Córdoba Programa Propio (XXPP.MO 4.1) and Junta de Andalucía (PAI Group BIO-0159), Spain, for their financial support for this work. LC-MS/MS and bioinformatics analyses were performed respectively at the Proteomics and Bioinformatics Units, SCAI (Central Facilities for Research Support), University of Córdoba. All appropriate permissions have been obtained from the copyright holders of any work that has been reproduced in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Agüera.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of authors.

Additional information

Abbreviations: AGC—automatic gain control; CID—collision induced dissociation; FDR – false discovery rate.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Haba, P., Amil-Ruiz, F. & Agüera, E. Physiological and Proteomic Characterization of the Elevated Temperature Effect on Sunflower (Helianthus annuus L.) Primary Leaves. Russ J Plant Physiol 67, 1094–1104 (2020). https://doi.org/10.1134/S1021443720060060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443720060060

Keywords:

Navigation