Skip to main content
Log in

Numerical and Experimental Study of the Multichannel Nature of the Synthesis of Carbon Nanostructures in DC Plasma Jets

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Wide spectrum of carbon nanostructures was synthesized by means of simple plasma chemistry using DC plasma torch: carbon nanotubes, nanowalls, graphene, hydrogenated graphene and a mixture of nanotubes with graphene. The synthesis was performed in the plasma-chemical reactor under the pressure varying in the close range 350–710 Torr with different types of hydrocarbon as an admixture to the helium plasma. Aliphatics (propane, butane methane and acetylene) were used providing a variation of C:H ratio. The plasma-chemical pyrolysis of hydrocarbons in the temperature range 1000–8000 K was analyzed using the thermodynamic and gas dynamic characteristics. It is determined that the main contribution to the formation of predecessors of solid carbon makes the composition of plasma jet in the temperature range 2500–3500 K. In this range the interrelation between atomic hydrogen H and hydrocarbon molecules CH varies dramatically, and the mole fraction of solid carbon Cgr goes upward. The C:H ratio in the carbon feedstock is shown to have an influence on the particularity of processes of formation of condensed carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Eletskii AV (1997) Carbon nanotubes. Phys Uspekhi 40:899–924. https://doi.org/10.1070/PU1997v040n09ABEH000282

    Article  Google Scholar 

  2. Eletskii AV, Erkimbaev AO, Zitserman VYu, Kobzev GA, Trakhtengerts MS (2012) Thermophysical properties of nanoobjects: data classification and validity evaluation. High Temp 50:488–495. https://doi.org/10.1134/S0018151X1203008X

    Article  CAS  Google Scholar 

  3. Eletskii AV, Iskandarova IM, Knizhnik AA, Krasikov DN (2011) Graphene: fabrication methods and thermophysical properties. Phys Uspekhi 54:227–258. https://doi.org/10.3367/UFNe.0181.201103a.0233

    Article  CAS  Google Scholar 

  4. Siwal SS, Zhang Q, Devi N, Thakur VK (2020) Carbon-based polymer nanocomposite for high-performance energy storage applications. Polymers 12:505. https://doi.org/10.3390/polym12030505

    Article  CAS  PubMed Central  Google Scholar 

  5. Mostofizadeh A, Li Y, Song B, Huang Y (2011) Synthesis, properties, and applications of low-dimensional carbon-related nanomaterials. J Nanomater 2011:685081. https://doi.org/10.1155/2011/685081

    Article  CAS  Google Scholar 

  6. VanderWal RL (2002) Fe-catalyzed single-walled carbon nanotube synthesis within a flame environment. Combust Flame 130:37–47. https://doi.org/10.1016/S0010-2180(02)00360-7

    Article  CAS  Google Scholar 

  7. Hatakeyama R (2017) Nanocarbon materials fabricated using plasmas. Rev Mod Plasma Phys 1:7. https://doi.org/10.1007/s41614-017-0009-y

    Article  Google Scholar 

  8. Manawi YM, Ihsanullah Samara A, Al-Ansari T, Muataz A, Atieh MA (2018) A review of carbon nanomaterials’ synthesis via the chemical vapor deposition (CVD) method. Materials 11:822. https://doi.org/10.3390/ma11050822

    Article  CAS  PubMed Central  Google Scholar 

  9. Agboola AE, Pike RW, Hertwig TA, Lou HH (2007) Conceptual design of carbon nanotube processes. Clean Technol Environ Policy 9:289–311. https://doi.org/10.1007/s10098-006-0083-2

    Article  CAS  Google Scholar 

  10. Münzer A, Xiao L, Sehlleier YH, Schulz C, Wiggers H (2018) All gas-phase synthesis of graphene: characterization and its utilization for silicon-based lithium-ion batteries. Electrochim Acta 272:52–59. https://doi.org/10.1016/j.electacta.2018.03.137

    Article  CAS  Google Scholar 

  11. Tam E, Levchenko I, Li J, Shashurin A, Murphy AB, Keidar M, Ostrikov K (2011) Graphene and carbon nanotubes from arc plasmas: experiment and plasma modeling. IEEE Trans Plasma Sci 39:2798–2799. https://doi.org/10.1109/TPS.2011.2152860

    Article  CAS  Google Scholar 

  12. Szymanski L, Kolacinski Z, Wiak S, Raniszewski G, Pietrzak L (2017) Synthesis of carbon nanotubes in thermal plasma reactor at atmospheric pressure. Nanomaterials 7:45. https://doi.org/10.3390/nano7020045

    Article  CAS  PubMed Central  Google Scholar 

  13. Kim J, Heo SB, Gu GH, Suh JS (2010) Fabrication of graphene flakes composed of multi-layer graphene sheets using a thermal plasma jet system. Nanotechnology 21:095601. https://doi.org/10.1088/0957-4484/21/9/095601

    Article  CAS  PubMed  Google Scholar 

  14. Weltmann K-D, Kolb JF, Holub M, Uhrlandt D, Šimek M, Ostrikov K, Hamaguchi S, Cvelbar U, Černák M, Locke B, Fridman A, Favia P, Becker K (2018) The future for plasma science and technology. Plasma Process Polym 16:e1800118. https://doi.org/10.1002/ppap.201800118

    Article  CAS  Google Scholar 

  15. Ostrikov K, Murphy AB (2007) Plasma-aided nanofabrication: where is the cutting edge? J Phys D Appl Phys 40:2223–2241. https://doi.org/10.1088/0022-3727/40/8/S01

    Article  CAS  Google Scholar 

  16. Gonzalez-Aguilar J, Moreno M, Fulcheri L (2007) Carbon nanostructures production by gas-phase plasma processes at atmospheric pressure. J Phys D Appl Phys 40:2361–2374. https://doi.org/10.1088/0022-3727/40/8/S16

    Article  CAS  Google Scholar 

  17. Bianco A, Cheng H-M, Enoki N, Gogotsi Y, Hurt RH, Koratkar N, Kyotani T, Monthioux M, Rae C, Juan P, Tascon MD, Zhang J (2013) All in the graphene family—a recommended nomenclature for two-dimensional carbon materials. Carbon 65:1–6. https://doi.org/10.1016/j.carbon.2013.08.038

    Article  CAS  Google Scholar 

  18. Liu XY, Hong RY, Feng WG, Badami D (2014) Synthesis of structure controlled carbon nanomaterials by AC arc plasma process. Powder Technol 256:158–165. https://doi.org/10.1016/j.powtec.2014.01.096

    Article  CAS  Google Scholar 

  19. Zhang H, Cao T, Cheng Y (2015) Preparation of few-layer graphene nanosheets by radio-frequency induction thermal plasma. Carbon 86:38–45. https://doi.org/10.1016/j.carbon.2015.01.021

    Article  CAS  Google Scholar 

  20. Pristavita R, Mendoza-Gonzalez N-Y, Meunier J-L, Berk D (2011) Carbon nano-flakes produced by an inductively coupled thermal plasma system for catalyst applications. Plasma Chem Plasma Process 31:393–403. https://doi.org/10.1007/s11090-010-9218-7

    Article  CAS  Google Scholar 

  21. Bundaleska N, Tsyganov D, Dias A, Felizardo E, Henriques J, Dias F, Abrashev M, Kissovski J, Tatarova E (2018) Microwave plasmas enabled synthesis of free standing carbon nanostructures at atmospheric pressure conditions. Phys Chem Chem Phys 20:13810–13824. https://doi.org/10.1039/c8cp01896k

    Article  CAS  PubMed  Google Scholar 

  22. Melero C, Rincón R, Muñoz J, Zhang G, Sun S, Perez A, Royuela O, González-Gago C, Calzada M (2017) Scalable graphene production from ethanol decomposition by microwave argon plasma torch. Plasma Phys Control Fusion 60:014009. https://doi.org/10.1088/1361-6587/aa8480

    Article  CAS  Google Scholar 

  23. Moreno-Couranjou M, Monthioux M, Gonzalez-Aguilar J, Fulcheri L (2009) A non-thermal plasma process for the gas phase synthesis of carbon nanoparticles. Carbon 47:2310–2321. https://doi.org/10.1016/j.carbon.2009.04.003

    Article  CAS  Google Scholar 

  24. Shavelkina MB, Filimonova EA, Amirov RKh, Isakaev EKh (2018) Methane/nitrogen plasma-assisted synthesis of graphene and carbon nanotubes. J Phys D Appl Phys 51:294005. https://doi.org/10.1088/1361-6463/aacc3d

    Article  CAS  Google Scholar 

  25. Shavelkina MB, Ivanov PP, Bocharov AN, Amirov RKh (2019) 1D modeling of the equilibrium plasma flow in the scope of direct current plasma torch assisted graphene synthesis. J Phys D Appl Phys 52:495202. https://doi.org/10.1088/1361-6463/ab4075

    Article  CAS  Google Scholar 

  26. Levchenko I, Ostrikov K, Xu S (2009) Thermodynamical and plasma-driven kinetic growth of high-aspect-ratio nanostructures: effect of hydrogen termination. J Phys D Appl Phys 42:125207. https://doi.org/10.1088/0022-3727/42/12/125207

    Article  CAS  Google Scholar 

  27. Tatarova E, Dias A, Henriques J, Abrashev M, Bundaleska N, Kovacevic E, Gonçalves B (2017) Towards large-scale in free-standing graphene and N-graphene sheets. Sci Rep 7:10175. https://doi.org/10.1038/s41598-017-10810-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Meunier J-L, Mendoza-Gonzalez N-Y, Pristavita R, Binny D, Berk D (2014) Two-dimensional geometry control of graphene nanoflakes produced by thermal plasma for catalyst applications. Plasma Chem Plasma Proc 34:505–521. https://doi.org/10.1007/s11090-014-9524-6

    Article  CAS  Google Scholar 

  29. Nechaev YS, Veziroglu NT (2015) On the hydrogenation-dehydrogenation of graphene-layer-nanostructures: relevance to the hydrogen on-board storage problem. Int J Phys Sci 10:54–89. https://doi.org/10.5897/IJPS2014.4212

    Article  Google Scholar 

  30. Merlen A, Buijnsters JG, Pardanaud C (2017) A guide to and review of the use of multiwavelength Raman spectroscopy for characterizing defective aromatic carbon solids: from graphene to amorphous carbon. Coatings 7:153. https://doi.org/10.3390/coatings7100153

    Article  CAS  Google Scholar 

  31. Popov RG, Shpilrain EE, Zaichenko VM (1999) Natural gas pyrolysis in the regenerative gas heater Part II: natural gas pyrolysis in the free volume of the regenerative gas heater. Int J Hydrog Energy 24:335–339. https://doi.org/10.1016/S0360-3199(98)00037-8

    Article  CAS  Google Scholar 

  32. Buravtsev NN, Kolbanovskii YuA, Rossikhin IV, Bilera IV (2018) Effect of the calorific intensity of combustion chamber on production of synthesis gas in partial oxidation of methane–oxygen mixtures in the combustion mode. Russ J Appl Chem 91:1588–1596. https://doi.org/10.1134/S107042721810004X

    Article  CAS  Google Scholar 

  33. Belov GV, Iorish VS, Yungman VS (2000) Simulation of equilibrium states of thermodynamic systems using IVTANTERMO for Windows. High Temp 38:191–196. https://doi.org/10.1007/BF02755944

    Article  CAS  Google Scholar 

  34. Shavelkina M, Amirov R, Bilera I (2018) Formation of carbon nanostructures by the plasma jets: synthesis, characterization, application. Mater Today Proc 5:25956–25961. https://doi.org/10.1016/j.matpr.2018.08.011

    Article  CAS  Google Scholar 

  35. Mendiara T, Domene MP, Millera A, Bilbao R, Alzueta MU (2005) An experimental study of the soot formed in the pyrolysis of acetylene. J Anal Appl Pyrol 74:486–493. https://doi.org/10.1016/j.jaap.2004.11.019

    Article  CAS  Google Scholar 

  36. Bannov AG, Popov MV, Kurmashov PB (2020) Thermal analysis of carbon nanomaterials: advantages and problems of interpretation. J Therm Anal Calorim. https://doi.org/10.1007/s10973-020-09647-2

    Article  Google Scholar 

  37. Hsieh YC, Chou YC, Lin CP, Hsieh TF, Shu CM (2010) Thermal analysis of multi-walled carbon nanotubes by Kissinger’s corrected kinetic equation. Aerosol Air Qual Res 10:212–218. https://doi.org/10.1134/S0018151X20030165

    Article  CAS  Google Scholar 

  38. Shavelkina MB, Amirov RKh, Kavyrshin DI, Chinnov VF (2020) Spectroscopic study of a helium plasma jet with hydrocarbon additives. High Temp 58:309–316. https://doi.org/10.4209/aaqr.2009.08.0053

    Article  CAS  Google Scholar 

  39. Keidar M, Levchenko I, Arbel T, Alexander M, Waas AM, Ostrikov K (2008) Increasing the length of single-wall carbon nanotubes in a magnetically enhanced arc discharge. Appl Phys Lett 92:043129. https://doi.org/10.1063/1.2839609

    Article  CAS  Google Scholar 

  40. Okuno H, Grivel E, Fabry F, Gruenberger TM, Gonzalez-Aguilar JJ, Palnichenko A, Fulchieri L, Probst N, Chalier JC (2004) Synthesis of carbon nanotubes and nano-necklaces by thermal plasma process. Carbon 42:2543–2549. https://doi.org/10.1016/j.carbon.2004.05.037

    Article  CAS  Google Scholar 

  41. Krestinin AV (2000) Detailed modeling of soot formation in hydrocarbon pyrolysis. Combust Flame 121(3):513–524. https://doi.org/10.1016/S0010-2180(99)00167-4

    Article  CAS  Google Scholar 

  42. Fulcheri L, Probst N, Flamant G, Fabry F, Grivei E, Bourrat X (2002) Plasma processing: a step toward the production of new grades of carbon black. Carbon 40(2):169–176. https://doi.org/10.1016/S0008-6223(01)00169-5

    Article  CAS  Google Scholar 

  43. Kim KS, Seo JH, Nam JS, Ju WT, Hong SH (2005) Production of hydrogen and carbon black by methane decomposition using DC-RF hybrid thermal plasmas. IEEE Trans Plasma Sci 33(2):813–823. https://doi.org/10.1109/TPS.2005.844526

    Article  CAS  Google Scholar 

  44. Fincke JR, Anderson RP, Hyde T, Detering BA, Wright R, Bewley RL, Haggard DC, Swank WD (2002) Plasma thermal conversion of methane to acetylene. Plasma Chem Plasma Process 22(1):105–136. https://doi.org/10.1023/A:1012944615974

    Article  CAS  Google Scholar 

  45. Fabry F, Flamant G, Fulcheri L (2001) Carbon black processing by thermal plasma. Analysis of the particle formation mechanism Chem. Eng Sci 56:2123–2132. https://doi.org/10.1016/S0009-2509(00)00486-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is supported by the Russian Foundation for Basic Research, Grant No. 19-08-00081.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Bocharov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shavelkina, M.B., Ivanov, P.P., Bocharov, A.N. et al. Numerical and Experimental Study of the Multichannel Nature of the Synthesis of Carbon Nanostructures in DC Plasma Jets. Plasma Chem Plasma Process 41, 171–189 (2021). https://doi.org/10.1007/s11090-020-10133-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-020-10133-8

Keywords

Navigation