Skip to main content
Log in

Comparative Metabolic Profiling of Two Contrasting Date Palm Genotypes Under Salinity

  • Original Article
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Since specific metabolites may be associated with salinity tolerance, this study aimed to decipher the salinity tolerance mechanism in date palm based on the information encoded by the metabolomic profiles of the salt-tolerant “Umsila” and salt-susceptible “Zabad” cultivars when grown under salinity conditions. Changes in the metabolomic profiles of the leaf and root tissues were determined using hydrophilic interaction liquid chromatography (HILIC) and reverse-phase liquid chromatography (RPLC) mass spectrometry. The global untargeted metabolomic analysis showed the presence of 4878 metabolites accumulated in leaf and root tissues of the date palm seedlings. Principal component analysis (PCA) revealed the presence of unique groups of metabolites for each treatment and tissue type. Pathway analysis showed the involvement of some of these metabolites in the biosynthesis of several types of membranous lipids and glycolipids molecules such as 18:0-lyso-phosphatidylethanolamine (lysoPE), and also the synthesis of cell-wall components such as 16-hydroxy hexadecanoic acid, which is an intermediate metabolite in cutin, suberin, and wax biosynthesis. Moreover, antioxidant flavonoids such as (+)-catechin and epicatechin, vitamins such as B9, phytohormone-associated compounds such as dihydrozeatin-9-N-glucoside-O-glucoside, and osmolytes such as the sulfonic amino acid taurine were all significantly (p ≤ 0.05, FWER ≤ 0.05) altered in response to salinity in both cultivars. These results indicate that salinity tolerance in date palm involved a multi-dimensional mechanism, which includes the modification of the cell-wall and cellular membranes, the production of oxygen species scavengers, the adjustment of cellular osmotic pressure, and probably the alteration of the hormonal balance. The intracultivar metabolomic profile comparison strategy performed in this study represents an approach that may pave the road toward the identification of salinity tolerance mechanisms in date palm based on the final protein products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Datasets

LC-MS-processed results obtained from this study were deposited in the Metabolomics Workbench database with the accession number ST001156.

References

  • Al Kharusi L, Assaha DV, Al-Yahyai R, Yaish MW (2017) Screening of date palm (Phoenix dactylifera L.) cultivars for salinity tolerance forests 8:136

  • Al Kharusi L, Sunkar R, Al-Yahyai R, Yaish MW (2019a) Antioxidant response to salinity in salt-tolerant and salt-susceptible cultivars of date palm. Agriculture 9:8

    Google Scholar 

  • Al Kharusi L, Sunkar R, Al-Yahyai R, Yaish MW (2019b) Comparative water relations of two contrasting date palm genotypes under salinity. Int J Agron

  • Al-Alawi RA, Al-Mashiqri JH, Al-Nadabi JS, Al-Shihi BI, Baqi Y (2017) Date palm tree (Phoenix dactylifera L.): natural products and therapeutic options. Front Plant Sci 8:845

    PubMed  PubMed Central  Google Scholar 

  • Assaha DVM, Mekawy AMM, Ueda A, Saneoka H (2015) Salinity-induced expression of HKT may be crucial for Na+ exclusion in the leaf blade of huckleberry (Solanum scabrum Mill.), but not of eggplant (Solanum melongena L.). Biochem Biophys Res Commun 460:416–421. https://doi.org/10.1016/j.bbrc.2015.03.048

    Article  CAS  PubMed  Google Scholar 

  • Brady JD, Sadler IH, Fry SC (1998) Pulcherosine, an oxidatively coupled trimer of tyrosine in plant cell walls: its role in cross-link formation. Phytochemistry 47:349–353

    CAS  PubMed  Google Scholar 

  • Brown DJ, DuPont FM (1989) Lipid composition of plasma membranes and endomembranes prepared from roots of barley (Hordeum vulgare L.): effects of salt. Plant Physiol 90:955–961

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers MC et al (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30:918

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Austral Ecol 18:117–143

    Google Scholar 

  • Cotsaftis O, Plett D, Shirley N, Tester M, Hrmova M (2012) A two-staged model of Na+ exclusion in rice explained by 3D modeling of HKT transporters and alternative splicing. PLoS One 7:e39865. https://doi.org/10.1371/journal.pone.0039865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowan AK (2009) Plant growth promotion by 18: 0-lyso-phosphatidylethanolamine involves senescence delay. Plant Signal Behav 4:324–327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daayf F, El Bellaj M, El Hassni M, J’aiti F, El Hadrami I (2003) Elicitation of soluble phenolics in date palm (Phoenix dactylifera) callus by Fusarium oxysporum f. sp. albedinis culture medium. Environ Exp Bot 49:41–47

    CAS  Google Scholar 

  • De Taeye C, Caullet G, Eyamo Evina VJ, Collin S (2017) Procyanidin A2 and its degradation products in raw, fermented, and roasted cocoa. J Agric Food Chem 65:1715–1723

    PubMed  Google Scholar 

  • del Río LA (2015) ROS and RNS in plant physiology: an overview. J Exp Bot 66:2827–2837

    PubMed  Google Scholar 

  • del Río JC, Rencoret J, Gutiérrez A, Kim H, Ralph J (2018) Structural characterization of lignin from maize (Zea mays L) fibers: evidence for diferuloylputrescine incorporated into the lignin polymer in maize kernels. J Agric Food Chem 66:4402–4413

    PubMed  Google Scholar 

  • El Rabey HA, Al-Malki AL, Abulnaja KO (2016) Proteome analysis of date palm (Phoenix dactylifera L.) under severe drought and salt stress. Int J Genomics 2016

  • Emam M, Helal N (2008) Vitamins minimize the salt-induced oxidative stress hazards. Aust J Basic Appl Sci 2:110–1119

    Google Scholar 

  • Farag KM, Palta JP (1991) Improving postharvest keeping quality of vine-ripened tomato fruits with a natural lipid. HortScience 26:778–778

    Google Scholar 

  • Farag KM, Palta JP (1993) Use of lysophosphatidylethanolamine, a natural lipid, to retard tomato leaf and fruit senescence. Physiol Plant 87:515–521

    CAS  Google Scholar 

  • Fauconneau B, Waffo-Teguo P, Huguet F, Barrier L, Decendit A, Merillon J-M (1997) Comparative study of radical scavenger and antioxidant properties of phenolic compounds from Vitis vinifera cell cultures using in vitro tests. Life Sci 61:2103–2110

    CAS  PubMed  Google Scholar 

  • Feliciano RP, Shea MP, Shanmuganayagam D, Krueger CG, Howell AB, Reed JD (2012) Comparison of isolated cranberry (Vaccinium macrocarpon Ait.) proanthocyanidins to catechin and procyanidins A2 and B2 for use as standards in the 4-(dimethylamino) cinnamaldehyde assay. J Agric Food Chem 60:4578–4585

    CAS  PubMed  Google Scholar 

  • Formentin E et al (2018) H2O2 signature and innate antioxidative profile make the difference between sensitivity and tolerance to salt in rice cells. Front Plant Sci:9

  • Fujimaki S, Maruyama T, Suzui N, Kawachi N, Miwa E, Higuchi K (2015) Base to tip and long-distance transport of sodium in the root of common reed [Phragmites australis (Cav.) Trin. ex Steud.] at steady state under constant high-salt conditions. Plant Cell Physiol 56:943–950

    CAS  PubMed  Google Scholar 

  • Galli V, da Silva Messias R, Perin EC, Borowski JM, Bamberg AL, Rombaldi CV (2016) Mild salt stress improves strawberry fruit quality. LWT Food Sci Technol 73:693–699

    CAS  Google Scholar 

  • Gao Y, Li M, Zhang X, Yang Q, Huang B (2019) Upregulation of lipid metabolism and glycine betaine synthesis are associated with choline-induced salt tolerance in halophytic seashore paspalum. Plant Cell Environ

  • Garcia-Perez A, Burg MB (1991) Renal medullary organic osmolytes. Physiol Rev 71:1081–1115

    CAS  PubMed  Google Scholar 

  • Geissman T (1940) The isolation of eriodictyol and homoeriodictyol. An improved procedure. J Am Chem Soc 62:3258–3259

    CAS  Google Scholar 

  • Golani Y, Kaye Y, Gilhar O, Ercetin M, Gillaspy G, Levine A (2013) Inositol polyphosphate phosphatidylinositol 5-phosphatase9 (At5PTase9) controls plant salt tolerance by regulating endocytosis. Mol Plant 6:1781–1794

    CAS  PubMed  Google Scholar 

  • Graham JE, Wilkinson BJ (1992) Staphylococcus aureus osmoregulation: roles for choline, glycine betaine, proline, and taurine. J Bacteriol 174:2711–2716

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo B, Tang Z, Wu C, Xu K, Qi P (2018) Transcriptomic analysis reveal an efficient osmoregulatory system in Siberian sturgeon Acipenser baeri in response to salinity stress. Sci Rep:8

  • Hamad I, AbdElgawad H, al Jaouni S, Zinta G, Asard H, Hassan S, Hegab M, Hagagy N, Selim S (2015) Metabolic analysis of various date palm fruit (Phoenix dactylifera L.) cultivars from Saudi Arabia to assess their nutritional quality. Molecules 20:13620–13641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hammer Ø, Harper D, Ryan P (2001) PAST: paleontological statistics software package for education and data analysis Palaeontol. Electronica 4:1–9

    Google Scholar 

  • Hanson AD, Beaudoin GA, McCarty DR, Gregory JF (2016) Does abiotic stress cause functional B vitamin deficiency in plants? Plant Physiol 172:2082–2097

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heredia A (2003) Biophysical and biochemical characteristics of cutin, a plant barrier biopolymer. Biochim Biophys Acta (BBA) 1620:1–7

    CAS  Google Scholar 

  • Hong J, Hwang S, Chung G, Cowan A (2007) Influence of lysophosphatidylethanolamine application on fruit quality of Thompson seedless grapes. J Appl Hortic 9:112–114

    Google Scholar 

  • Hossain MS, Persicke M, ElSayed AI, Kalinowski J, Dietz K-J (2017) Metabolite profiling at the cellular and subcellular level reveals metabolites associated with salinity tolerance in sugar beet. J Exp Bot 68:5961–5976

    PubMed  PubMed Central  Google Scholar 

  • Hou B, Lim E-K, Higgins GS, Bowles DJ (2004) N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana. J Biol Chem 279:47822–47832

    CAS  PubMed  Google Scholar 

  • Jana GA, Yaish MW (2020a) Functional characterization of the Glyoxalase-I (PdGLX1) gene family in date palm under abiotic stresses. Plant Signal Behav:1811527

  • Jana GA, Yaish MW (2020b) Genome-wide identification and functional characterization of glutathione peroxidase genes in date palm (Phoenix dactylifera L.) under stress conditions. Plant Gene:100237

  • Jana GA, Al Kharusi L, Sunkar R, Al-Yahyai R, Yaish MW (2019) Metabolomic analysis of date palm seedlings exposed to salinity and silicon treatments. Plant Signal Behav:1663112. https://doi.org/10.1080/15592324.2019.1663112

  • Jonczyk R et al (2008) Elucidation of the final reactions of DIMBOA-glucoside biosynthesis in maize: characterization of Bx6 and Bx7. Plant Physiol 146:1053–1063

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–D280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawasaki A, Ono A, Mizuta S, Kamiya M, Takenaga T, Murakami S (2017) The Taurine content of Japanese seaweed. In: Taurine 10. Springer, pp 1105-1112

  • Khlifi R et al (2018) Heat treatment improves the immunomodulatory and cellular antioxidant behavior of a natural flavanone: eriodictyol. Int Immunopharmacol 61:317–324

    CAS  PubMed  Google Scholar 

  • Koch W, Kukula-Koch W, Głowniak K (2017) Catechin composition and antioxidant activity of black teas in relation to brewing time. J AOAC Int 100:1694–1699

    CAS  PubMed  Google Scholar 

  • Krishnamurthy P, Ranathunge K, Franke R, Prakash H, Schreiber L, Mathew M (2009) The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa L). Planta 230:119–134

    CAS  PubMed  Google Scholar 

  • Krishnamurthy P, Jyothi-Prakash PA, Qin L, He J, Lin Q, Loh CS, Kumar PP (2014) Role of root hydrophobic barriers in salt exclusion of a mangrove plant A vicennia officinalis. Plant Cell Environ 37:1656–1671

    CAS  PubMed  Google Scholar 

  • Latz A, Mehlmer N, Zapf S, Mueller TD, Wurzinger B, Pfister B, Csaszar E, Hedrich R, Teige M, Becker D (2013) Salt stress triggers phosphorylation of the Arabidopsis vacuolar K+ channel TPK1 by calcium-dependent protein kinases (CDPKs). Mol Plant 6:1274–1289

    CAS  PubMed  Google Scholar 

  • Lawrence E, Vetvicka V, Matousová V (1985) The illustrated book of trees & shrubs. Octopus

  • Li H, Qiu J, Chen F, Lv X, Fu C, Zhao D, Hua X, Zhao Q (2012) Molecular characterization and expression analysis of dihydroflavonol 4-reductase (DFR) gene in Saussurea medusa. Mol Biol Rep 39:2991–2999

    CAS  PubMed  Google Scholar 

  • Lv P, Yu J, Xu X, Lu T, Xu F (2018) Eriodictyol inhibits high glucose-induced oxidative stress and inflammation in retinal ganglial cells. J Cell Biochem

  • Modafar CE, Tantaoui A, Boustani EE (2000) Changes in cell wall-bound phenolic compounds and lignin in roots of date palm cultivars differing in susceptibility to Fusarium oxysporum f. sp. albedinis. J Phytopathol 148:405–411. https://doi.org/10.1046/j.1439-0434.2000.00512.x

    Article  Google Scholar 

  • Morel I et al (1993) Antioxidant and iron-chelating activities of the flavonoids catechin, quercetin and diosmetin on iron-loaded rat hepatocyte cultures. Biochem Pharmacol 45:13–19

    CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Nebula M, Harisankar H, Chandramohanakumar N (2013) Metabolites and bioactivities of Rhizophoraceae mangroves. Nat Prod Bioprospecting 3:207–232

    CAS  Google Scholar 

  • Ngandeu F, Bezabih M, Ngamga D, Tchinda AT, Ngadjui BT, Abegaz BM, Dufat H, Tillequin F (2008) Rotenoid derivatives and other constituents of the twigs of Millettia duchesnei. Phytochemistry 69:258–263

    CAS  PubMed  Google Scholar 

  • Nishidono Y, Saifudin A, Nishizawa M, Fujita T, Nakamoto M, Tanaka K (2018) Identification of the chemical constituents in Ginger (Zingiber officinale) responsible for thermogenesis. Nat Prod Commun 13:1934578X1801300722

    CAS  Google Scholar 

  • Oliveros J (2015) VENNY An interactive tool for comparing lists with Venn Diagrams 2007

  • Omoto E, Iwasaki Y, Miyake H, Taniguchi M (2016) Salinity induces membrane structure and lipid changes in maize mesophyll and bundle sheath chloroplasts. Physiol Plant 157:13–23

    CAS  PubMed  Google Scholar 

  • Özgen M, Park S, Palta JP (2005) Mitigation of ethylene-promoted leaf senescence by a natural lipid, lysophosphatidylethanolamine. HortScience 40:1166–1167

    Google Scholar 

  • Pushpa D, Yogendra KN, Gunnaiah R, Kushalappa AC, Murphy A (2014) Identification of late blight resistance-related metabolites and genes in potato through nontargeted metabolomics. Plant Mol Biol Report 32:584–595

    CAS  Google Scholar 

  • Quartacci MF, Pinzino C, Sgherri CLM, Dalla Vecchia F, Navari-Izzo F (2000) Growth in excess copper induces changes in the lipid composition and fluidity of PSII-enriched membranes in wheat. Physiol Plant 108:87–93. https://doi.org/10.1034/j.1399-3054.2000.108001087.x

    Article  CAS  Google Scholar 

  • Rai A, Umashankar S, Rai M, Lim BK, Bing JAS, Swarup S (2016) Coordinate regulation of metabolites glycosylation and stress hormones biosynthesis by TT8 in Arabidopsis. Plant Physiol:00421.02016

  • Rautengarten C et al (2012) Arabidopsis deficient in cutin ferulate encodes a transferase required for feruloylation of ω-hydroxy fatty acids in cutin polyester. Plant Physiol 158:654–665

    CAS  PubMed  Google Scholar 

  • Reginato M, Llanes A, Devinar G, Garello F, Luna MV (2016) Morphophysiology and biochemistry of Prosopis strombulifera under salinity. Are halophytes tolerant to all salts? In: Sabkha Ecosystems Volume V: The Americas. Springer, pp 57-71

  • Sae-Leaw T, Benjakul S (2019) Prevention of quality loss and melanosis of Pacific white shrimp by cashew leaf extracts. Food Control 95:257–266

    CAS  Google Scholar 

  • Safronov O, Kreuzwieser J, Haberer G, Alyousif MS, Schulze W, al-Harbi N, Arab L, Ache P, Stempfl T, Kruse J, Mayer KX, Hedrich R, Rennenberg H, Salojärvi J, Kangasjärvi J (2017) Detecting early signs of heat and drought stress in Phoenix dactylifera (date palm). PLoS One 12:e0177883

    PubMed  PubMed Central  Google Scholar 

  • Sarkar SK (2007) Stepup procedures controlling generalized FWER and generalized FDR. Ann Stat:2405–2420

  • Schuller-Levis GB, Park E (2003) Taurine: new implications for an old amino acid. FEMS Microbiol Lett 226:195–202

    CAS  PubMed  Google Scholar 

  • Seitzer PM, Searle BC (2018) Incorporating in-source fragment information improves metabolite identification accuracy in untargeted LC–MS data sets. J Proteome Res

  • Shabala S (2013) Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot 112:1209–1221

    PubMed  PubMed Central  Google Scholar 

  • Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164:317–322

    CAS  Google Scholar 

  • Sharma M, Chai C, Morohashi K, Grotewold E, Snook ME, Chopra S (2012) Expression of flavonoid 3’-hydroxylase is controlled by P1, the regulator of 3-deoxyflavonoid biosynthesis in maize. BMC Plant Biol 12:196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sonowal H, Shukla K, Kota S, Saxena A, Ramana KV (2018) Vialinin A, an Edible mushroom-derived p-terphenyl antioxidant, prevents VEGF-induced neovascularization in vitro and in vivo oxidative medicine and cellular longevity 2018

  • Stanley D et al (2010) The role of α-glucosidase in germinating barley grains. Plant Physiol:110.168328

  • Sui N, Han G (2014) Salt-induced photoinhibition of PSII is alleviated in halophyte Thellungiella halophila by increases of unsaturated fatty acids in membrane lipids. Acta Physiol Plant 36:983–992

    CAS  Google Scholar 

  • Taha E, Mariod A, Abouelhawa S, El-Geddawy M, Sorour M, Matthäus B (2010) Antioxidant activity of extracts from six different Sudanese plant materials. Eur J Lipid Sci Technol 112:1263–1269

    CAS  Google Scholar 

  • Tai A, Fukunaga K, Ohno A, Ito H (2014) Antioxidative properties of ascorbigen in using multiple antioxidant assays. Biosci Biotechnol Biochem 78:1723–1730

    CAS  PubMed  Google Scholar 

  • Thole JM, Nielsen E (2008) Phosphoinositides in plants: novel functions in membrane trafficking. Curr Opin Plant Biol 11:620–631

    CAS  PubMed  Google Scholar 

  • Wang T et al (2012) Trillin, a steroidal saponin isolated from the rhizomes of Dioscorea nipponica, exerts protective effects against hyperlipidemia and oxidative stress. J Ethnopharmacol 139:214–220

    CAS  PubMed  Google Scholar 

  • Wang L, Li W, Ma L, Chen J, Lü H, Jian T (2016) Salt stress changes chemical composition in Limonium bicolor (Bag.) Kuntze, a medicinal halophytic plant. Ind Crop Prod 84:248–253

    CAS  Google Scholar 

  • Welti R et al (2002) Profiling membrane lipids in plant stress responses role of phospholipase Dα in freezing-induced lipid changes in Arabidopsis. J Biol Chem 277:31994–32002

    CAS  PubMed  Google Scholar 

  • Wu Z, Smith JV, Paramasivam V, Butko P, Khan I, Cypser JR, Luo Y (2002) Ginkgo biloba extract EGb 761 increases stress resistance and extends life span of Caenorhabditis elegans. Cell Mol Biol (Noisy-le-Grand, France) 48:725–731

    CAS  Google Scholar 

  • Xia J, Wishart DS (2016) Using metaboanalyst 3.0 for comprehensive metabolomics data analysis. Curr Protoc Bioinformatics:14.10. 11-14.10. 91

  • Xue H-W, Chen X, Mei Y (2009) Function and regulation of phospholipid signalling in plants. Biochem J 421:145–156

    CAS  PubMed  Google Scholar 

  • Yaish MW, Kumar PP (2015) Salt tolerance research in date palm tree (Phoenix dactylifera L.), past, present, and future perspectives. Front Plant Sci 6. https://doi.org/10.3389/fpls.2015.00348

  • Yaish MW, Sunkar R, Zheng Y, Ji B, Al-Yahyai R, Farooq SA (2015) A genome-wide identification of the miRNAome in response to salinity stress in date palm (Phoenix dactylifera L.). Front Plant Sci 6:946

    PubMed  PubMed Central  Google Scholar 

  • Yaish MW, Al-Harrasi I, Alansari AS, Al-Yahyai R, Glick BR (2016) The use of high throughput DNA sequence analysis to assess the endophytic microbiome of date palm roots grown under different levels of salt stress. Int Microbiol 19:143–155

    CAS  PubMed  Google Scholar 

  • Yaish MW, Patankar HV, Assaha DV, Zheng Y, Al-Yahyai R, Sunkar R (2017) Genome-wide expression profiling in leaves and roots of date palm (Phoenix dactylifera L.) exposed to salinity. BMC Genomics 18:246

    PubMed  PubMed Central  Google Scholar 

  • Yaish MW, Al-Lawati A, Al-Harrasi I, Patankar HV (2018) Genome-wide DNA methylation analysis in response to salinity in the model plant caliph medic (Medicago truncatula). BMC Genomics 19:78

    PubMed  PubMed Central  Google Scholar 

  • Yiu J-C, Tseng M-J, Liu C-W, Kuo C-T (2012) Modulation of NaCl stress in Capsicum annuum L. seedlings by catechin. Sci Hortic 134:200–209

    CAS  Google Scholar 

  • Yu Y, Kou M, Gao Z, Liu Y, Xuan Y, Liu Y, Tang Z, Cao Q, Li Z, Sun J (2019) Involvement of phosphatidylserine and triacylglycerol in the response of sweet potato leaves to salt stress. Front Plant Sci:10. https://doi.org/10.3389/fpls.2019.01086

  • Zhu GF, Guo HJ, Huang Y, Wu CT, Zhang XF (2015) Eriodictyol, a plant flavonoid, attenuates LPS-induced acute lung injury through its antioxidative and anti-inflammatory activity. Exp Ther Med 10:2259–2266

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by a generous grant from the Research Council of Oman (TRC) number 151 to MWY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud W. Yaish.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Message

Global metabolic analyses performed on two date palm cultivars with different levels of salinity tolerance using mass spectrometry. We found that each of these cultivars showed unique metabolic profiles in their leaf and root tissues that included differentially accumulated antioxidants, membranous lipids, and vitamins, suggesting their involvement in salinity tolerance mechanisms.

Electronic supplementary material

ESM 1

(PDF 437 kb)

ESM 2

(PDF 377 kb)

ESM 3

(XLSX 15 kb)

ESM 4

(XLSX 919 kb)

ESM 5

(XLSX 36 kb)

ESM 6

(XLSX 22 kb)

ESM 7

(XLSX 21 kb)

ESM 8

(XLSX 18 kb)

ESM 9

(XLSX 13 kb)

ESM 10

(XLSX 17 kb)

ESM 11

(XLSX 28 kb)

ESM 12

(XLSX 17 kb)

ESM 13

(XLSX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Kharusi, L., Jana, G.A., Patankar, H.V. et al. Comparative Metabolic Profiling of Two Contrasting Date Palm Genotypes Under Salinity. Plant Mol Biol Rep 39, 351–363 (2021). https://doi.org/10.1007/s11105-020-01255-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-020-01255-6

Keywords

Navigation