Skip to main content
Log in

Tunable optical properties of Ni–Ag and Ni–Au nanoparticles in magneto-plasmonic nanostructures

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The combined optical and magnetic properties of magneto-plasmonic nanoparticles makes them ideal candidates for various applications in biomedical fields. In the present work, the optical properties of Ni–Ag and Ni–Au bimetallic alloy nanoparticles with varying sizes 20, 30, 40, 50, and 60 nm of spherical and aspect ratio 2, 3, and 4 of non-spherical nanostructures are studied by the discrete dipole approximation method in the water surrounding medium. Moreover, optical absorption spectra are studied to see the effect of polarization and different alloy compositions. The optical spectra is observed in the range of 371–1280 nm wavelengths and merged in visible-near-infrared region on the electromagnetic spectrum. The result shows that absorption spectra of bimetallic alloy nanoparticles can be well tuned by changing the particle size, aspect ratio’s, shapes, and compositions. Furthermore, Ni–Au nanoparticles have enrich optical absorption spectra as compared to Ni–Ag bimetallic nanoparticles. Our study provides a way to analyze and broaden the applications of bimetallic alloy nanoparticles in optical imaging, biomedical field, and therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amendola, V., Saija, R., Marago, O.M., Iati, M.A.: Superior plasmon absorption in iron-doped gold nanoparticles. Nanoscale 7, 8782–8792 (2015)

    ADS  Google Scholar 

  • Arruebo, M., Galan, M., Navascues, N., Tellez, C., Marquina, C., Ibarra, M.R., Santamaria, J.: Development of magnetic nanostructured silica-based materials as potential vectors for drug-delivery applications. Chem. Mater. 18, 1911–1919 (2006)

    Google Scholar 

  • Ashkarran, A.A., Bayat, A.: Surface plasmon resonance of metal nanostructures as a complementary technique for microscopic size measurement. Int. Nano Lett. 3, 50 (2013)

    Google Scholar 

  • Babonneau, D., Cabioch, T., Naudon, A., Girard, J.C., Denanot, M.F.: Silver nanoparticles encapsulated in carbon cages obtained by the co-sputtering of the metal and graphite. Surf. Sci. 409, 358–371 (1998)

    ADS  Google Scholar 

  • Bala, T., Bhame, S.D., Joy, P.A., Prasad, B.L.V., Sastry, M.: A facile liquid foam-based synthesis of nickel nanoparticles and their subsequent conversion to Ni core Ag shell particles: structural characterization and investigation of magnetic properties. J. Mater. Chem. 14, 2941–2945 (2004)

    Google Scholar 

  • Bhatia, P., Verma, S.S., Sinha, M.M.: Optical properties simulation of magneto-plasmonic alloys nanostructures. Plasmonics 14, 611–622 (2019)

    Google Scholar 

  • Brieler, F.J., Grundmann, P., Froba, M., Chen, L., Klar, P.J., Heimbrodt, W., Krug von Nidda, H.A., Kurz, T., Loidl, A.: Size dependence of the magnetic and optical properties of Cd1-x Mn x S nanostructures confined in mesoporous silica. Chem. Mater. 17, 795–803 (2005)

    Google Scholar 

  • Chen, W., Chen, S.: Iridium-platinum alloy nanoparticles: composition-dependent electrocatalytic activity for formic acid oxidation. J. Mater. Chem. 21, 9169–9178 (2011)

    Google Scholar 

  • Chen, D.H., He, X.R.: Synthesis of nickel ferrite nanoparticles by sol-gel method. Mater. Res. Bull. 36, 1369–1377 (2001)

    Google Scholar 

  • Chen, D.H., Wang, S.R.: Protective agent-free synthesis of Ni–Ag core-shell nanoparticles. Mater. Chem. Phys. 100, 468–471 (2006)

    Google Scholar 

  • Chen, Q., Rondinone, A.J., Chakoumakos, B.C., Zhang, Z.J.: Synthesis of superparamagnetic MgFe2O4 nanoparticles by coprecipitation. J. Magn. Magn. Mater. 194, 1–7 (1999)

    ADS  Google Scholar 

  • Chiu, H.K., Chiang, I.C., Chen, D.H.: Synthesis of NiAu alloy and core-shell nanoparticles in water-in-oil microemulsions. J. Nanopart. Res. 11, 1137–1144 (2009)

    ADS  Google Scholar 

  • Draine, B.T., Flatau, P.J.: Discrete-dipole approximation for scattering calculations. JOSA A 11, 1491–1499 (1994)

    ADS  Google Scholar 

  • Draine, B.T., Flatau, P.J.: Discrete-dipole approximation for periodic targets: theory and tests. JOSA A 25, 2693–2703 (2008)

    ADS  Google Scholar 

  • Draine, B.T., Flatau, P.J.: User guide for the discrete dipole approximation code DDSCAT 7.3. arXiv preprint arXiv:1305, 6497 (2013)

  • Gaudry, M., Cottancin, E., Pellarin, M., Lerme, J., Arnaud, L., Huntzinger, J.R., Vialle, J.L., Broyer, M., Rousset, J.L., Treilleux, M., Melinon, P.: Size and composition dependence in the optical properties of mixed (transition metal/noble metal) embedded clusters. Phys. Rev. B 67, 155409 (2003)

    ADS  Google Scholar 

  • Harb, M., Rabilloud, F., Simon, D.: Structure and optical properties of core-shell bimetallic AgnNin clusters: comparison with pure silver and nickel clusters. J. Chem. Phys. 131, 174302 (2009)

    ADS  Google Scholar 

  • Hu, M., Chen, J., Li, Z.Y., Au, L., Hartland, G.V., Li, X., Marquez, M., Xia, Y.: Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 35, 1084–1094 (2006)

    Google Scholar 

  • Huang, W.J., Sun, R., Tao, J., Menard, L.D., Nuzzo, R.G., Zuo, J.M.: Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction. Nat. Mater. 7, 308–313 (2008)

    ADS  Google Scholar 

  • Hunyadi, S.E., Murphy, C.J.: Bimetallic silver-gold nanowires: fabrication and use in surface-enhanced Raman scattering. J. Mater. Chem. 16, 3929–3935 (2006)

    Google Scholar 

  • Ji, M., Chen, X., Wai, C.M., Fulton, J.L.: Synthesizing and dispersing silver nanoparticles in a water-in-supercritical carbon dioxide microemulsion. J. Am. Chem. Soc. 121, 2631–2632 (1999)

    Google Scholar 

  • Jian, Z., Yongchang, W.: Surface plasmon resonance enhanced scattering of Au colloidal nanoparticles. Plasma Sci. Technol 5, 1835–1839 (2003)

    Google Scholar 

  • Jiang, H., Moon, K.S., Dong, H., Hua, F., Wong, C.P.: Size-dependent melting properties of tin nanoparticles. Chem. Phys. Lett. 429, 492–496 (2006)

    ADS  Google Scholar 

  • Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972)

    ADS  Google Scholar 

  • Johnson, P.B., Christy, R.W.: Optical constants of transition metals: Ti, V, Cr, Mn, Fe Co, Ni and Pd. Phys. Rev. B 9, 5056–5070 (1974)

    ADS  Google Scholar 

  • Kassing, R., Petkov, P., Kulisch, W., Popov, C.: Functional Properties of Nanostructured Materials, vol. 223. Springer, Berlin (2007)

    Google Scholar 

  • Link, S., El-Sayed, M.A.: Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem. 19, 409–453 (2000)

    Google Scholar 

  • Major, K.J., De, C., Obare, S.O.: Recent advances in the synthesis of plasmonic bimetallic nanoparticles. Plasmonics 4, 61–78 (2009)

    Google Scholar 

  • Moser, A., Takano, K., Margulies, D.T., Albrecht, M., Sonobe, Y., Ikeda, Y., Sun, S., Fullerton, E.E.: Magnetic recording: advancing into the future. J. Phys. D Appl. Phys. 35, R157–R167 (2002)

    ADS  Google Scholar 

  • Ping, H., Chen, Y., Guo, H., Wang, Z., Zeng, D., Wang, L., Peng, D.L.: A facile solution approach for the preparation of Ag@Ni core-shell nanocubes. Mater. Lett. 116, 239–242 (2014)

    Google Scholar 

  • Portales, H., Saviot, L., Duval, E., Gaudry, M., Cottancin, E., Pellarin, M., Lerme, J., Broyer, M.: Resonant Raman scattering by quadrupolar vibrations of Ni–Ag core-shell nanoparticles. Phys. Rev. B 65, 165422 (2002)

    ADS  Google Scholar 

  • Rapallo, A., Rossi, G., Ferrando, R., Fortunelli, A., Curley, B.C., Lloyd, L.D., Tarbuck, G.M., Johnston, R.L.: Global optimization of bimetallic cluster structures: II. Size-mismatched Ag–Pd, Ag–Au, and Pd–Pt systems. J. Chem. Phys. 122, 194309 (2005)

    ADS  Google Scholar 

  • Rioux, D., Meunier, M.: Seeded growth synthesis of composition and size-controlled gold-silver alloy nanoparticles. J. Phys. Chem. C 119, 13160–13168 (2015)

    Google Scholar 

  • Ruehm, S.G., Corot, C., Vogt, P., Kolb, S., Debatin, J.F.: Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 103, 415–422 (2001)

    Google Scholar 

  • Sharma, A.K., Gupta, B.D.: Fiber-optic sensor based on surface plasmon resonance with Ag-Au alloy nanoparticle films. Nanotechnology 17, 124–131 (2005)

    ADS  Google Scholar 

  • Sridharan, K., Endo, T., Cho, S.G., Kim, J., Park, T.J., Philip, R.: Single-step synthesis and optical limiting properties of Ni–Ag and Fe-Ag bimetallic nanoparticles. Opt. Mater. 35, 860–867 (2013)

    ADS  Google Scholar 

  • Sun, S.: Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv. Mater. 18, 393–403 (2006)

    Google Scholar 

  • Tan, K.S., Cheong, K.Y.: Advances of Ag, Cu, and Ag–Cu alloy nanoparticles synthesized via chemical reduction route. J. Nanopart. Res. 15, 1537 (2013)

    ADS  Google Scholar 

  • Tanigaki, T., Saito, Y., Nakada, T., Tsuda, N., Kaito, C.: Structure of carbon-coated or silicon-oxide-coated ZnTe, ZnSe and ZnS nanoparticles produced by gas evaporation technique. J. Nanopart. Res. 4, 83–90 (2002)

    ADS  Google Scholar 

  • Tuersun, P., Yusufu, T., Yimiti, A., Sidike, A.: Refractive index sensitivity analysis of gold nanoparticles. Optik 149, 384–390 (2017)

    ADS  Google Scholar 

  • Wang, D., Schaaf, P.: Ni–Au bimetallic nanoparticles formed via dewetting. Mater. Lett. 70, 30–33 (2012)

    Google Scholar 

  • Yaghmaee, M.S., Shokri, B.: Effect of size on bulk and surface cohesion energy of metallic nano-particles. Smart Mater. Struct. 16, 349–354 (2007)

    ADS  Google Scholar 

  • Yi, D.K., Lee, S.S., Ying, J.Y.: Synthesis and applications of magnetic nanocomposite catalysts. Chem. Mater. 18, 2459–2461 (2006)

    Google Scholar 

  • Zhang, Z., Nenoff, T.M., Huang, J.Y., Berry, D.T., Provencio, P.P.: Room-temperature synthesis of thermally immiscible Ag-Ni nanoalloys. J. Phys. Chem. C 113, 1155–1159 (2009)

    Google Scholar 

  • Zhou, S., Yin, H., Schwartz, V., Wu, Z., Mullins, D., Eichhorn, B., Overbury, S.H., Dai, S.: In situ phase separation of NiAu alloy nanoparticles for preparing highly active Au/NiO CO oxidation catalysts. ChemPhysChem 9, 2475–2479 (2008)

    Google Scholar 

Download references

Acknowledgements

The author, Pradeep Bhatia, acknowledges B. T. Draine and P. J. Flatau for the use of their code DDSCAT 7.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Bhatia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatia, P., Verma, S.S. & Sinha, M.M. Tunable optical properties of Ni–Ag and Ni–Au nanoparticles in magneto-plasmonic nanostructures. Opt Quant Electron 52, 473 (2020). https://doi.org/10.1007/s11082-020-02596-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02596-y

Keywords

Navigation