Skip to main content
Log in

Relationship between Type I and Type II Template Processes: Amyloids and Genome Stability

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Classical views of hereditary mechanisms consider linear nucleic acids, DNA and RNA, as template molecules wherein genetic information is encoded by the sequence of nitrogenous bases. The template principle embodied in the central dogma of molecular biology describes the allowed paths of genetic information transfer from nucleic acids to proteins. The discovery of prions revealed an additional hereditary mechanism whereby the spatial structure is transmitted from one protein molecule to another independently of the sequence of nitrogenous bases in their structural genes. The simultaneous existence of linear (type I) and conformational (type II) templates in one cell inevitably implies their interaction. The review analyzes the current data confirming the idea that protein amyloid transformation may influence the genome stability and considers potential mechanisms of interactions between type I and type II template processes. Special attention is paid to the joint contribution of the two process to tumor “evolution” and the mechanisms of genome destabilization due to amyloid transformation of proteins in Alzheimer’s and Parkinson’s diseases and Down syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Crick F.H. 1958. On protein synthesis. Symp. Soc. Exp. Biol. 12, 138–163.

    CAS  PubMed  Google Scholar 

  2. Crick F. 1970. Central dogma of molecular biology. Nature. 227, 561–563.

    Article  CAS  PubMed  Google Scholar 

  3. Koltsov N.K. 1936. Hereditary molecules. In Organizatsiya kletk (Organization of the Cell). Moscow: Gos. Izd. Biol. Med. Lit., pp. 585–622.

    Google Scholar 

  4. Inge-Vechtomov S.G. 2013. The template principle: Paradigm of modern genetics. Russ. J. Genet. 49 (1), 4–9.

    Article  CAS  Google Scholar 

  5. Inge-Vechtomov S.G. 2015. From chromosome theory to the template principle. Russ. J. Genet. 51 (4), 323–333.

    Article  CAS  Google Scholar 

  6. Lobashev M.E. 1947. Physiological (paranecrotic) hypothesis of the mutatuion process. Vestn. Leningr. Gos. Univ.8, 10–29.

    Google Scholar 

  7. Timofeeff-Ressovsky N.W., Zimmer K.G., Delbrück M. 1935. Über die Natur der Genmutation und der Genstruktur. Nachr. Ges. Wiss. Gottingen.Fachr.13, 189–245.

    Google Scholar 

  8. Inge-Vechtomov S.G. 2015. Retrospectiva genetiki (Genetics in Retrospect). St. Petersburg: N-L.

    Google Scholar 

  9. Sydow J.F., Cramer P. 2009. RNA polymerase fidelity and transcriptional proofreading. Curr. Opin. Struct. Biol. 19, 732–739.

    Article  CAS  PubMed  Google Scholar 

  10. Roy H., Ibba M. 2006. Phenylalanyl-tRNA synthetase contains a dispensable RNA-binding domain that contributes to the editing of noncognate aminoacyl-tRNA. Biochemistry. 45, 9156–9162.

    Article  CAS  PubMed  Google Scholar 

  11. Gorini L. 1974. Streptomycin and misreading of the genetic code. In Ribosomes. Nomura M., Missieres A., Lengyel P. Eds. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press, pp. 791–803.

    Google Scholar 

  12. Hopfield J.J. 1974. Kinetic proofreading: A new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci. U. S. A.71, 4135–4139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Prusiner S.B. 1998. Prions. Proc. Natl. Acad. Sci. U. S. A.95, 13363–13383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wickner R.B., Shewmaker F., Edskes H., Kryndushkin D., Nemecek J., McGlinchey R., Bateman D., Winchester C.L. 2010. Prion amyloid structure explains templating: How proteins can be genes. FEMS Yeast Res. 10, 980–991.

    Article  CAS  PubMed  Google Scholar 

  15. Dobson C.M. 2004. Principles of protein folding, misfolding and aggregation. Semin. Cell Dev. Biol. 15, 3–16.

    Article  CAS  PubMed  Google Scholar 

  16. Tyedmers J., Mogk A., Bukau B. 2010. Cellular strategies for controlling protein aggregation. Nat. Rev. Mol. Cell. Biol. 11, 777–788.

    Article  CAS  PubMed  Google Scholar 

  17. Houck S.A., Singh S., Cyr D.M. 2012. Cellular responses to misfolded proteins and protein aggregates. Methods Mol. Biol. 832, 455–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schnabel J. 2010. Protein folding: The dark side of proteins. Nature. 464, 828–829.

    Article  CAS  PubMed  Google Scholar 

  19. Kajava A.V., Aebi U., Steven A.C. 2005. The parallel superpleated beta-structure as a model for amyloid fibrils of human amylin. J. Mol. Biol. 348, 247–252.

    Article  CAS  PubMed  Google Scholar 

  20. Kajava A.V., Baxa U., Steven A.C. 2010. Beta arcades: Recurring motifs in naturally occurring and disease-related amyloid fibrils. FASEB J.24, 1311–1319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ahmed A.B., Znassi N., Chateau M.T., Kajava A.V. 2015. A structure-based approach to predict predisposition to amyloidosis. Alzheimers Dement. 11, 681–690.

    Article  PubMed  Google Scholar 

  22. Bondarev S.A., Bondareva O.V., Zhouravleva G.A., Kajava A.V. 2018. BetaSerpentine: A bioinformatics tool for reconstruction of amyloid structures. Bioinformatics. 34, 599–608.

    Article  CAS  PubMed  Google Scholar 

  23. Eisenberg D., Jucker M. 2012. The amyloid state of proteins in human diseases. Cell. 148, 1188–1203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nizhnikov A.A., Antonets K.S., Inge-Vechtomov S.G. 2015. Amyloids: From pathogenesis to function. Biochemistry (Moscow). 80 (9), 1127–1144.

    CAS  PubMed  Google Scholar 

  25. Coustou V., Deleu C., Saupe S., Begueret J. 1997. The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc. Natl. Acad. Sci. U. S. A.94, 9773–9778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bateman D.A., Wickner R.B. 2013. The [PSI+] prion exists as a dynamic cloud of variants. PLoS Genet. 9, e1003257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Borchsenius A.S., Muller S., Newnam G.P., Inge-Vechtomov S.G., Chernoff Y.O. 2006. Prion variant maintained only at high levels of the Hsp104 disaggregase. Curr. Genet. 49, 21–29.

    Article  CAS  PubMed  Google Scholar 

  28. Barbitoff Y.A., Matveenko A.G., Moskalenko S.E., Zemlyanko O.M., Newnam G.P., Patel A., Chernova T.A., Chernoff Y.O., Zhouravleva G.A. 2017. To CURe or not to CURe? Differential effects of the chaperone sorting factor Cur1 on yeast prions are mediated by the chaperone Sis1. Mol. Microbiol. 105, 242–257.

    Article  CAS  PubMed  Google Scholar 

  29. Matveenko A.G., Barbitoff Y.A., Jay-Garcia L.M., Chernoff Y.O., Zhouravleva G.A. 2018. Differential effects of chaperones on yeast prions: CURrent view. Curr. Genet. 64, 317–325.

    Article  CAS  PubMed  Google Scholar 

  30. Choe Y.J., Park S.H., Hassemer T., Korner R., Vincenz-Donnelly L., Hayer-Hartl M., Hartl F.U. 2016. Failure of RQC machinery causes protein aggregation and proteotoxic stress. Nature. 531, 191–195.

    Article  CAS  PubMed  Google Scholar 

  31. Sitron C.S., Brandman O. 2019. CAT tails drive degradation of stalled polypeptides on and off the ribosome. Nat. Struct. Mol. Biol. 26, 450–459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wickner R.B. 1994. [URE3] as an altered URE2 protein: Evidence for a prion analog in Saccharomyces cerevisiae.Science. 264, 566–569.

    Article  CAS  PubMed  Google Scholar 

  33. Lacroute F. 1971. Non-Mendelian mutation allowing ureidosuccinic acid uptake in yeast. J. Bacteriol. 106, 519–522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cox B.S. 1965. [PSI], a cytoplasmic suppressor of super-suppressor in yeast. Heredity. 20, 505–521.

    Article  Google Scholar 

  35. Derkatch I.L., Bradley M.E., Zhou P., Chernoff Y.O., Liebman S.W. 1997. Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae.Genetics. 147, 507–519.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sondheimer N., Lindquist S. 2000. Rnq1: An epigenetic modifier of protein function in yeast. Mol. Cell. 5, 163–172.

    Article  CAS  PubMed  Google Scholar 

  37. Du Z., Park K.W., Yu H., Fan Q., Li L. 2008. Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae.Nat. Genet. 40, 460–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Patel B.K., Gavin-Smyth J., Liebman S.W. 2009. The yeast global transcriptional co-repressor protein Cyc8 can propagate as a prion. Nat. Cell Biol. 11, 344–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Alberti S., Halfmann R., King O., Kapila A., Lindquist S. 2009. A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell. 137, 146–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Suzuki G., Shimazu N., Tanaka M. 2012. A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress. Science. 336, 355–359.

    Article  CAS  PubMed  Google Scholar 

  41. Sipe J.D., Cohen A.S. 2000. Review: History of the amyloid fibril. J. Struct. Biol. 130, 88–98.

    Article  CAS  PubMed  Google Scholar 

  42. Hamodrakas S.J. 2011. Protein aggregation and amyloid fibril formation prediction software from primary sequence: Towards controlling the formation of bacterial inclusion bodies. FEBS J.278, 2428–2435.

    Article  CAS  PubMed  Google Scholar 

  43. Tsolis A.C., Papandreou N.C., Iconomidou V.A., Hamodrakas S.J. 2013. A consensus method for the prediction of “aggregation-prone” peptides in globular proteins. PLoS One. 8, e54175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kryndushkin D., Pripuzova N., Burnett B.G., Shewmaker F. 2013. Non-targeted identification of prions and amyloid-forming proteins from yeast and mammalian cells. J. Biol. Chem. 288, 27100–27111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nizhnikov A.A., Alexandrov A.I., Ryzhova T.A., Mitkevich O.V., Dergalev A.A., Ter-Avanesyan M.D., Galkin A.P. 2014. Proteomic screening for amyloid proteins. PLoS One. 9, e116003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Nizhnikov A.A., Ryzhova T.A., Volkov K.V., Zadorsky S.P., Sopova J.V., Inge-Vechtomov S.G., Galkin A.P. 2016. Interaction of prions causes heritable traits in Saccharomyces cerevisiae.PLoS Genet. 12, e1006504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Pan K.M., Baldwin M., Nguyen J., Gasset M., Se-rban A., Groth D., Mehlhorn I., Huang Z., Fletterick R.J., Cohen F.E., Prusiner S.B. 1993. Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc. Natl. Acad. Sci. U. S. A.90, 10962–10966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kryndushkin D.S., Alexandrov I.M., Ter-Avanesyan M.D., Kushnirov V.V. 2003. Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104. J. Biol. Chem. 278, 49636–49643.

    Article  CAS  PubMed  Google Scholar 

  49. Sipe J.D., Benson M.D., Buxbaum J.N., Ikeda S., Merlini G., Saraiva M.J., Westermark P. 2014. Nomenclature 2014: Amyloid fibril proteins and clinical classification of the amyloidosis. Amyloid. 21, 221–224.

    Article  PubMed  Google Scholar 

  50. Galkin A.P., Velizhanina M.E., Sopova Yu.V., Shenfeld A.A., Zadorsky S.P. 2018. Prions and non-infectious amyloids of mammals: Similaritires and differences. Biochemistry (Moscow). 83 (10), 1184–1195.

    CAS  PubMed  Google Scholar 

  51. Steensma D.P. 2001. “Congo” red: Out of Africa? Arch. Pathol. Lab. Med. 125, 250–252.

    CAS  PubMed  Google Scholar 

  52. LeVine H., 3rd. 1999. Quantification of beta-sheet amyloid fibril structures with thioflavin T. Methods Enzymol. 309, 274–284.

    Article  CAS  PubMed  Google Scholar 

  53. Kushnirov V.V., Ter-Avanesyan M.D. 1998. Structure and replication of yeast prions. Cell. 94, 13–16.

    Article  CAS  PubMed  Google Scholar 

  54. Chernoff Y.O., Lindquist S.L., Ono B., Inge-Vechtomov S.G., Liebman S.W. 1995. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [PSI+]. Science. 268, 880–884.

    Article  CAS  PubMed  Google Scholar 

  55. Liebman S.W., Chernoff Y.O. 2012. Prions in yeast. Genetics. 191, 1041–1072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dergalev A.A., Alexandrov A.I., Ivannikov R.I., Ter-Avanesyan M.D., Kushnirov V.V. 2019. Yeast Sup35 prion structure: Two types, four parts, many variants. Int. J. Mol. Sci. 20,

  57. Prusiner S.B. 1989. Scrapie prions. Annu. Rev. Microbiol. 43, 345–374.

    Article  CAS  PubMed  Google Scholar 

  58. Yang X., Cheng Z., Zhang L., Wu G., Shi R., Gao Z., Li C. 2017. Prion protein family contributes to tumorigenesis via multiple pathways. Adv. Exp. Med. Biol. 1018, 207–224.

    Article  CAS  PubMed  Google Scholar 

  59. Gajdusek D.C. 1991. The transmissible amyloidoses: Genetical control of spontaneous generation of infectious amyloid proteins by nucleation of configurational change in host precursors: kuru-CJD-GSS-scrapie-BSE. Eur. J. Epidemiol. 7, 567–577.

    Article  CAS  PubMed  Google Scholar 

  60. Prusiner S.B., Scott M.R. 1997. Genetics of prions. Annu. Rev. Genet. 31, 139–175.

    Article  CAS  PubMed  Google Scholar 

  61. Prusiner S.B. 2001. Shattuck lecture—neurodegenerative diseases and prions. N. Engl. J. Med. 344, 1516–1526.

    Article  CAS  PubMed  Google Scholar 

  62. Wickner R.B., Edskes H.K., Son M., Bezsonov E.E., DeWilde M., Ducatez M. 2018. Yeast prions compared to functional prions and amyloids. J. Mol. Biol. 430, 3707–3719.

    Article  CAS  PubMed  Google Scholar 

  63. Roberts B.T., Wickner R.B. 2003. Heritable activity: A prion that propagates by covalent autoactivation. Genes Dev. 17, 2083–2087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Brown J.C., Lindquist S. 2009. A heritable switch in carbon source utilization driven by an unusual yeast prion. Genes Dev. 23, 2320–2332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chakravarty A.K., Smejkal T., Itakura A.K., Garcia D.M., Jarosz D.F. 2020. A non-amyloid prion particle that activates a heritable gene expression program. Mol. Cell. 77, 251–265 e259.

  66. Derkatch I.L., Chernoff Y.O., Kushnirov V.V., Inge-Vechtomov S.G., Liebman S.W. 1996. Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae.Genetics. 144, 1375–1386.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Schlumpberger M., Prusiner S.B., Herskowitz I. 2001. Induction of distinct [URE3] yeast prion strains. Mol. Cell. Biol. 21, 7035–7046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. King C.Y. 2001. Supporting the structural basis of prion strains: Induction and identification of [PSI] variants. J. Mol. Biol. 307, 1247–1260.

    Article  CAS  PubMed  Google Scholar 

  69. Prusiner S.B. 2013. Biology and genetics of prions causing neurodegeneration. Annu. Rev. Genet. 47, 601–623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liebman S.W., Sherman F. 1979. Extrachromosomal psi+ determinant suppresses nonsense mutations in yeast. J. Bacteriol. 139, 1068–1071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wickner R.B., Masison D.C., Edskes H.K. 1995. [PSI] and [URE3] as yeast prions. Yeast. 11, 1671–1685.

    Article  CAS  PubMed  Google Scholar 

  72. Derkatch I.L., Bradley M.E., Hong J.Y., Liebman S.W. 2001. Prions affect the appearance of other prions: The story of [PIN(+)]. Cell. 106, 171–182.

    Article  CAS  PubMed  Google Scholar 

  73. Antonets K.S., Kliver S.F., Polev D.E., Shuvalova A.R., Andreeva E.A., Inge-Vechtomov S.G., Nizhnikov A.A. 2017. Distinct mechanisms of phenotypic effects of inactivation and prionization of Swi1 protein in Saccharomyces cerevisiae.Biochemistry (Moscow). 82 (10), 1147–1157.

    CAS  PubMed  Google Scholar 

  74. Malovichko Y.V., Antonets K.S., Maslova A.R., Andreeva E.A., Inge-Vechtomov S.G., Nizhnikov A.A. 2019. RNA sequencing reveals specific transcriptomicsignatures distinguishing effects of the [SWI(+)] prion and SWI1 deletion in yeast Saccharomyces cerevisiae.Genes (Basel). 10 (3), 212. https://doi.org/10.3390/genes10030212

    Article  CAS  PubMed Central  Google Scholar 

  75. Chapman M.R., Robinson L.S., Pinkner J.S., Roth R., Heuser J., Hammar M., Normark S., Hultgren S.J. 2002. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science. 295, 851–855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Alteri C.J., Xicohtencatl-Cortes J., Hess S., Caballero-Olin G., Giron J.A., Friedman R.L. 2007. Mycobacterium tuberculosis produces pili during human infection. Proc. Natl. Acad. Sci. U. S. A.104, 5145–5150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dueholm M.S., Petersen S.V., Sonderkaer M., Larsen P., Christiansen G., Hein K.L., Enghild J.J., Nielsen J.L., Nielsen K.L., Nielsen P.H., Otzen D.E. 2010. Functional amyloid in Pseudomonas.Mol. Microbiol. 77, 1009–1020.

    CAS  PubMed  Google Scholar 

  78. Kalebina T.S., Plotnikova T.A., Gorkovskii A.A., Selyakh I.O., Galzitskaya O.V., Bezsonov E.E., Gellissen G., Kulaev I.S. 2008. Amyloid-like properties of Saccharomyces cerevisiae cell wall glucantransferase Bgl2p: Prediction and experimental evidences. Prion. 2, 91–96.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ramsook C.B., Tan C., Garcia M.C., Fung R., Soybelman G., Henry R., Litewka A., O’Meally S., Otoo H.N., Khalaf R.A., Dranginis A.M., Gaur N.K., Klotz S.A., Rauceo J.M., Jue C.K., Lipke P.N. 2010. Yeast cell adhesion molecules have functional amyloid-forming sequences. Eukaryot. Cell. 9, 393–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ryzhova T.A., Sopova J.V., Zadorsky S.P., Siniukova V.A., Sergeeva A.V., Galkina S.A., Nizhnikov A.A., Shenfeld A.A., Volkov K.V., Galkin A.P. 2018. Screening for amyloid proteins in the yeast proteome. Curr. Genet. 64, 469–478.

    Article  CAS  PubMed  Google Scholar 

  81. Sergeeva A.V., Sopova J.V., Belashova T.A., Siniukova V.A., Chirinskaite A.V., Galkin A.P., Zadorsky S.P. 2019. Amyloid properties of the yeast cell wall protein Toh1 and its interaction with prion proteins Rnq1 and Sup35. Prion. 13, 21–32.

    Article  CAS  PubMed  Google Scholar 

  82. Kalebina T.S., Rekstina V.V. 2019. Molecular organization of yeast cell envelope. Mol. Biol. (Moscow). 53 (6), 850–861.

    Article  CAS  Google Scholar 

  83. Hewetson A., Do H.Q., Myers C., Muthusubramanian A., Sutton R.B., Wylie B.J., Cornwall G.A. 2017. Functional amyloids in reproduction. Biomolecules. 7 (3), 46. https://doi.org/10.3390/biom7030046

    Article  CAS  PubMed Central  Google Scholar 

  84. Si K., Choi Y.B., White-Grindley E., Majumdar A., Kandel E.R. 2010. Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation. Cell. 140, 421–435.

    Article  CAS  PubMed  Google Scholar 

  85. Majumdar A., Cesario W.C., White-Grindley E., Ji-ang H., Ren F., Khan M.R., Li L., Choi E.M., Kannan K., Guo F., Unruh J., Slaughter B., Si K. 2012. Critical role of amyloid-like oligomers of Drosophila Orb2 in the persistence of memory. Cell. 148, 515–529.

    Article  CAS  PubMed  Google Scholar 

  86. Stephan J.S., Fioriti L., Lamba N., Colnaghi L., Karl K., Derkatch I.L., Kandel E.R. 2015. The CPEB3 protein is a functional prion that interacts with the actin cytoskeleton. Cell. Rep. 11, 1772–1785.

    Article  CAS  PubMed  Google Scholar 

  87. Fowler D.M., Koulov A.V., Alory-Jost C., Marks M.S., Balch W.E., Kelly J.W. 2006. Functional amyloid formation within mammalian tissue. PLoS Biol. 4, e6.

    Article  PubMed  CAS  Google Scholar 

  88. Berchowitz L.E., Kabachinski G., Walker M.R., Carlile T.M., Gilbert W.V., Schwartz T.U., Amon A. 2015. Regulated formation of an amyloid-like translational repressor governs gametogenesis. Cell. 163, 406–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sopova J.V., Koshel E.I., Belashova T.A., Zadorsky S.P., Sergeeva A.V., Siniukova V.A., Shenfeld A.A., Velizhanina M.E., Volkov K.V., Nizhnikov A.A., Kachkin D.V., Gaginskaya E.R., Galkin A.P. 2019. RNA-binding protein FXR1 is presented in rat brain in amyloid form. Sci. Rep. 9, 18983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Giraldo R. 2007. Defined DNA sequences promote the assembly of a bacterial protein into distinct amyloid nanostructures. Proc. Natl. Acad. Sci. U. S. A.104, 17388–17393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Molina-Garcia L., Gasset-Rosa F., Moreno-Del A-lamo M., Fernandez-Tresguerres M.E., Moreno-Diaz de la Espina S., Lurz R., Giraldo R. 2016. Functional amyloids as inhibitors of plasmid DNA replication. Sci. Rep. 6, 25425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chakrabortee S., Kayatekin C., Newby G.A., Mendillo M.L., Lancaster A., Lindquist S. 2016. Luminidependens (LD) is an Arabidopsis protein with prion behavior. Proc. Natl. Acad. Sci. U. S. A.113, 6065–6070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Vasudevan S., Steitz J.A. 2007. AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell. 128, 1105–1118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Majumder M., House R., Palanisamy N., Qie S., Day T.A., Neskey D., Diehl J.A., Palanisamy V. 2016. RNA-binding protein FXR1 regulates p21 and TERC RNA to bypass p53-mediated cellular senescence in OSCC. PLoS Genet. 12, e1006306.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Antonets K.S., Nizhnikov A.A. 2017. Predicting amyloidogenic proteins in the proteomes of plants. Int. J. Mol. Sci. 18 (10), 2155. https://doi.org/10.3390/ijms18102155

    Article  CAS  PubMed Central  Google Scholar 

  96. Harrison A.F., Shorter J. 2017. RNA-binding proteins with prion-like domains in health and disease. Biochem. J.474, 1417–1438.

    Article  CAS  PubMed  Google Scholar 

  97. Li L., McGinnis J.P., Si K. 2018. Translational control by prion-like proteins. Trends Cell. Biol. 28, 494–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Coppede F., Migliore L. 2015. DNA damage in neurodegenerative diseases. Mutat. Res. 776, 84–97.

    Article  CAS  PubMed  Google Scholar 

  99. Iourov I.Y., Vorsanova S.G., Liehr T., Yurov Y.B. 2009. Aneuploidy in the normal, Alzheimer’s disease and ataxia-telangiectasia brain: Differential expression and pathological meaning. Neurobiol. Dis. 34, 212–220.

    Article  CAS  PubMed  Google Scholar 

  100. Migliore L., Botto N., Scarpato R., Petrozzi L., Cipriani G., Bonuccelli U. 1999. Preferential occurrence of chromosome 21 malsegregation in peripheral blood lymphocytes of Alzheimer disease patients. Cytogenet. Cell. Genet. 87, 41–46.

    Article  CAS  PubMed  Google Scholar 

  101. Trippi F., Botto N., Scarpato R., Petrozzi L., Bonuccelli U., Latorraca S., Sorbi S., Migliore L. 2001. Spontaneous and induced chromosome damage in somatic cells of sporadic and familial Alzheimer’s disease patients. Mutagenesis. 16, 323–327.

    Article  CAS  PubMed  Google Scholar 

  102. Yurov Y.B., Vorsanova S.G., Liehr T., Kolotii A.D., Iourov I.Y. 2014. X-chromosome aneuploidy in the Alzheimer’s disease brain. Mol. Cytogenet. 7, 20. https://doi.org/10.1186/1755-8166-7-20

    Article  PubMed  PubMed Central  Google Scholar 

  103. Migliore L., Scarpato R., Coppede F., Petrozzi L., Bonuccelli U., Rodilla V. 2001. Chromosome and oxidative damage biomarkers in lymphocytes of Parkinson’s disease patients. Int. J. Hyg. Environ. Hlth. 204, 61–66.

    Article  CAS  Google Scholar 

  104. Hegde M.L., Gupta V.B., Anitha M., Harikrishna T., Shankar S.K., Muthane U., Subba Rao K., Jagannatha Rao K.S. 2006. Studies on genomic DNA topology and stability in brain regions of Parkinson’s disease. Arch. Biochem. Biophys. 449, 143–156.

    Article  CAS  PubMed  Google Scholar 

  105. Hanson P.K. 2018. Saccharomyces cerevisiae: A unicellular model genetic organism of enduring importance.Curr. Prot. Essential Lab. Techn.

    Google Scholar 

  106. Giaever G., Chu A.M., Ni L., Connelly C., Riles L., Veronneau S., Dow S., Lucau-Danila A., Anderson K., Andre B., Arkin A.P., Astromoff A., El-Bakkoury M., Bangham R., Benito R., et al. 2002. Functional profiling of the Saccharomyces cerevisiae genome. Nature. 418, 387–391.

    Article  CAS  PubMed  Google Scholar 

  107. Winzeler E.A., Shoemaker D.D., Astromoff A., L-iang H., Anderson K., Andre B., Bangham R., Benito R., Boeke J.D., Bussey H., Chu A.M., Connelly C., Davis K., Dietrich F., Dow S.W., et al. 1999. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science. 285, 901–906.

    Article  CAS  PubMed  Google Scholar 

  108. Jones G.M., Stalker J., Humphray S., West A., Cox T., Rogers J., Dunham I., Prelich G. 2008. A systematic library for comprehensive overexpression screens in Saccharomyces cerevisiae.Nat. Methods. 5, 239–241.

    Article  CAS  PubMed  Google Scholar 

  109. Ng P.C., Wong E.D., MacPherson K.A., Aleksander S., Argasinska J., Dunn B., Nash R.S., Skrzypek M.S., Gondwe F., Jha S., Karra K., Weng S., Miyasato S., Simison M., Engel S.R., Cherry J.M. 2020. Transcriptome visualization and data availability at the Saccharomyces Genome Database. Nucleic Acids Res. 48, D743–D748.

    Article  CAS  PubMed  Google Scholar 

  110. Schmidt A. 2018. Merged map of the yeast proteome. Cell Syst. 6, 150–152.

    Article  CAS  PubMed  Google Scholar 

  111. Chernova T.A., Chernoff Y.O., Wilkinson K.D. 2019. Yeast models for amyloids and prions: Environmental modulation and drug discovery. Molecules. 24, 3388. https://doi.org/10.3390/molecules24183388

    Article  CAS  PubMed Central  Google Scholar 

  112. Inge-Vechtomov S.G. 2011. Yeast prions as a model of neurodegenerative infectious amyloidoses in humans. Russ. J. Dev. Biol.42 (5), 293–300.

    Article  CAS  Google Scholar 

  113. Rencus-Lazar S., DeRowe Y., Adsi H., Gazit E., Laor D. 2019. Yeast models for the study of amyloid-associated disorders and development of future therapy. Front. Mol. Biosci. 6, 15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Klein H.L., Bacinskaja G., Che J., Cheblal A., Elango R., Epshtein A., Fitzgerald D.M., Gomez-Gonzalez B., Khan S.R., Kumar S., Leland B.A., Marie L., Mei Q., Mine-Hattab J., Piotrowska A., et al. 2019. Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways. Microb. Cell. 6, 1–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Inge-Vechtomov S.G., Repnevskaya M.V. 1989. Phenotypic expression of primary lesions of genetic material in Saccharomyces yeasts. Genome. 31, 497–502.

    Article  CAS  PubMed  Google Scholar 

  116. Inge-Vechtomov S.G., Repnevskaia M.V., Karpova T.S. 1986. Hybridization of cells of the same mating type in Saccharomyces yeasts. Genetika. 22, 2625–2636.

    CAS  PubMed  Google Scholar 

  117. Stepchenkova E.I., Kochenova O.V., Zhuk A.S., Andreychuk Yu.V., Inge-Vechtomov S.G. 2011. Phenotypic manifestation and trans-conversion of primary genetic material damages considered in the alpha-test on the yeast Saccharomyces cerevisiae.Gigiena i Sanitariya. 6, 64–69.

    Google Scholar 

  118. Zhuk A.S., Shiryaeva A.A., Kochenova O.V., Andreychuk Yu.V., Stepchenkova E.I., Inge-Vechtomov S.G. 2013. Alpha test: A system for the assessment of genetically active factors. Aktial. Probl. Gumanit. Estestv. Nauk. 11, 54–60.

    Google Scholar 

  119. Stepchenkova E.I., Kochenova O.V., Inge-Vechtomov S.G. 2009. “Illegitimate” mating and “illegitimate” cytoduction in heterothallic yeast Saccharomyces cerevisiae as a system for analysis of genetic activity of exogenic and endogenic factors in “alfa-test.” Vestn. S-Peterb.Gos. Univ.3, 129–140.

    Google Scholar 

  120. Repnevskaya M.V., Kashkin P.K., Inge-Vechtomov S.G. 1989. Modification changes of the genetic material in Saccharomyces yeasts. Genetika. 25, 425–436.

    Google Scholar 

  121. Andreychuk Yu.V., Shiryaeva A.A., Zhuk A.A., Stepchenkova E.I., Inge-Vechtomov S.G. 2017. Impact of prionization of the Sup35 protein [PSI+] on the frequency of genetic changes accounted in the alpha-test in yeast Saccharomyces cerevisiae.Russ. J. Genet.: Appl Res.13 (2), 172–174.

    Article  CAS  Google Scholar 

  122. Abilev S.K., Glazer V.M. 2015. Mutagenez s osnovami genetoksikologii: uchebnoe posobie (Mutagenesis and Fundamentals of Gene Toxicology: A Textbook), St. Petersburg: Nester-Istoriya.

  123. Friedberg E.C., Walker G.C., Siede W., Wood R.D., Schultz R.A., Ellenberger T. 2006. DNA Repair and Mutagenesis, 2nd ed. Washington, DC: ASM Press.

    Google Scholar 

  124. Inge-Vechtomov S.G. 2015. Genetika s osnovami selektsii (Genetics with Fundamentals of Selection). St. Petersburg: N-L.

    Google Scholar 

  125. Waisertreiger I.S., Liston V.G., Menezes M.R., Kim H.M., Lobachev K.S., Stepchenkova E.I., Tahirov T.H., Rogozin I.B., Pavlov Y.I. 2012. Modulation of mutagenesis in eukaryotes by DNA replication fork dynamics and quality of nucleotide pools. Environ. Mol. Mutagen. 53, 699–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kunkel T.A. 2004. DNA replication fidelity. J. Biol. Chem. 279, 16895–16898.

    Article  CAS  PubMed  Google Scholar 

  127. Ferguson D.O., Alt F.W. 2001. DNA double strand break repair and chromosomal translocation: Lessons from animal models. Oncogene. 20, 5572–5579.

    Article  CAS  PubMed  Google Scholar 

  128. Dey P. 2004. Aneuploidy and malignancy: An unsolved equation. J. Clin. Pathol. 57, 1245–1249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Matsuura S., Ito E., Tauchi H., Komatsu K., Ikeuchi T., Kajii T. 2000. Chromosomal instability syndrome of total premature chromatid separation with mosaic variegated aneuploidy is defective in mitotic-spindle checkpoint. Am. J. Hum. Genet. 67, 483–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chatterjee N., Walker G.C. 2017. Mechanisms of DNA damage, repair, and mutagenesis. Environ. Mol. Mutagen. 58, 235–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Martin L.J. 2008. DNA damage and repair: Relevance to mechanisms of neurodegeneration. J. Neuropathol. Exp. Neurol. 67, 377–387.

    Article  CAS  PubMed  Google Scholar 

  132. Bernstein C., Prasad A.R., Nfonsam V., Bernstein H. 2013. DNA damage, DNA repair and cancer. In New Research Directions in DNA Repair. Chen C., Ed. InTech, pp. 413–465.

    Google Scholar 

  133. Bernstein C., Bernstein H. 2015. Epigenetic reduction of DNA repair in progression to gastrointestinal cancer. W. J. Gastrointest. Oncol. 7, 30–46.

    Article  Google Scholar 

  134. Drake J.W. 1999. The distribution of rates of spontaneous mutation over viruses, prokaryotes, and eukaryotes. Ann. N. Y. Acad. Sci. 870, 100–107.

    Article  CAS  PubMed  Google Scholar 

  135. Tiwari V., Wilson D.M., 3rd. 2019. DNA damage and associated DNA repair defects in disease and premature aging. Am. J. Hum. Genet. 105, 237–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lyras L., Cairns N.J., Jenner A., Jenner P., Halliwell B. 1997. An assessment of oxidative damage to proteins, lipids, and DNA in brain from patients with Alzheimer’s disease. J. Neurochem. 68, 2061–2069.

    Article  CAS  PubMed  Google Scholar 

  137. Nunomura A., Honda K., Takeda A., Hirai K., Zhu X., Smith M.A., Perry G. 2006. Oxidative damage to RNA in neurodegenerative diseases. J. Biomed. Biotechnol. 2006, 82323.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Mecocci P., MacGarvey U., Beal M.F. 1994. Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann. Neurol. 36, 747–751.

    Article  CAS  PubMed  Google Scholar 

  139. Lovell M.A., Gabbita S.P., Markesbery W.R. 1999. Increased DNA oxidation and decreased levels of repair products in Alzheimer’s disease ventricular CSF. J. Neurochem. 72, 771–776.

    Article  CAS  PubMed  Google Scholar 

  140. Mecocci P., Polidori M.C., Ingegni T., Cherubini A., Chionne F., Cecchetti R., Senin U. 1998. Oxidative damage to DNA in lymphocytes from AD patients. Neurology. 51, 1014–1017.

    Article  CAS  PubMed  Google Scholar 

  141. Wang J., Markesbery W.R., Lovell M.A. 2006. Increased oxidative damage in nuclear and mitochondrial DNA in mild cognitive impairment. J. Neurochem. 96, 825–832.

    Article  CAS  PubMed  Google Scholar 

  142. Mullaart E., Boerrigter M.E., Ravid R., Swaab D.F., Vijg J. 1990. Increased levels of DNA breaks in cerebral cortex of Alzheimer’s disease patients. Neurobiol. Agi-ng. 11, 169–173.

    Article  CAS  Google Scholar 

  143. Alam Z.I., Jenner A., Daniel S.E., Lees A.J., Cairns N., Marsden C.D., Jenner P., Halliwell B. 1997. Oxidative DNA damage in the parkinsonian brain: An apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J. Neurochem. 69, 1196–1203.

    Article  CAS  PubMed  Google Scholar 

  144. Seet R.C., Lee C.Y., Lim E.C., Tan J.J., Quek A.M., Chong W.L., Looi W.F., Huang S.H., Wang H., Chan Y.H., Halliwell B. 2010. Oxidative damage in Parkinson disease: Measurement using accurate biomarkers. Free Radic. Biol. Med. 48, 560–566.

    Article  CAS  PubMed  Google Scholar 

  145. Ferrante R.J., Browne S.E., Shinobu L.A., Bowling A.C., Baik M.J., MacGarvey U., Kowall N.W., Brown R.H., Jr., Beal M.F. 1997. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J. Neurochem. 69, 2064–2074.

    Article  CAS  PubMed  Google Scholar 

  146. Bogdanov M., Brown R.H., Matson W., Smart R., Hayden D., O’Donnell H., Flint Beal M., Cudkowicz M. 2000. Increased oxidative damage to DNA in ALS patients. Free Radic. Biol. Med. 29, 652–658.

    Article  CAS  PubMed  Google Scholar 

  147. Aguirre N., Beal M.F., Matson W.R., Bogdanov M.B. 2005. Increased oxidative damage to DNA in an animal model of amyotrophic lateral sclerosis. Free Radic. Res. 39, 383–388.

    Article  CAS  PubMed  Google Scholar 

  148. Warita H., Hayashi T., Murakami T., Manabe Y., Abe K. 2001. Oxidative damage to mitochondrial DNA in spinal motoneurons of transgenic ALS mice. Brain Res. Mol. Brain Res. 89, 147–152.

    Article  CAS  PubMed  Google Scholar 

  149. Ferri A., Cozzolino M., Crosio C., Nencini M., Ca-sciati A., Gralla E.B., Rotilio G., Valentine J.S., Carri M.T. 2006. Familial ALS-superoxide dismutases associate with mitochondria and shift their redox potentials. Proc. Natl. Acad. Sci. U. S. A.103, 13860–13865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Cheignon C., Tomas M., Bonnefont-Rousselot D., Faller P., Hureau C., Collin F. 2018. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 14, 450–464.

    Article  CAS  PubMed  Google Scholar 

  151. Butterfield D.A., Swomley A.M., Sultana R. 2013. Amyloid beta-peptide (1–42)-induced oxidative stress in Alzheimer disease: Importance in disease pathogenesis and progression. Antioxid. Redox Signal. 19, 823–835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Yatin S.M., Varadarajan S., Link C.D., Butterfield D.A. 1999. In vitro and in vivo oxidative stress associated with Alzheimer’s amyloid beta-peptide (1–42). Neurobiol. Aging. 20, 325–330, 339–342.

    Article  CAS  PubMed  Google Scholar 

  153. Butterfield D.A., Yatin S.M., Link C.D. 1999. In vitro and in vivo protein oxidation induced by Alzheimer’s disease amyloid beta-peptide (1–42). Ann. N. Y. Acad. Sci. 893, 265–268.

    Article  CAS  PubMed  Google Scholar 

  154. Turnbull S., Tabner B.J., Brown D.R., Allsop D. 2003. Generation of hydrogen peroxide from mutant forms of the prion protein fragment PrP121–231. Biochemistry. 42, 7675–7681.

    Article  CAS  PubMed  Google Scholar 

  155. Scudamore O., Ciossek T. 2018. Increased oxidative stress exacerbates alpha-synuclein aggregation in vivo.J. Neuropathol. Exp. Neurol. 77, 443–453.

    Article  CAS  PubMed  Google Scholar 

  156. Cherny D., Hoyer W., Subramaniam V., Jovin T.M. 2004. Double-stranded DNA stimulates the fibrillation of alpha-synuclein in vitro and is associated with the mature fibrils: An electron microscopy study. J. Mol. Biol. 344, 929–938.

    Article  CAS  PubMed  Google Scholar 

  157. Ohyagi Y., Asahara H., Chui D.H., Tsuruta Y., Sakae N., Miyoshi K., Yamada T., Kikuchi H., Taniwaki T., Murai H., Ikezoe K., Furuya H., Kawarabayashi T., Shoji M., Checler F., et al. 2005. Intracellular Abeta42 activates p53 promoter: A pathway to neurodegeneration in Alzheimer’s disease. FASEB J.19, 255–257.

    Article  CAS  PubMed  Google Scholar 

  158. Nizhnikov A.A., Antonets K.S., Bondarev S.A., Inge-Vechtomov S.G., Derkatch I.L. 2016. Prions, amyloids, and RNA: Pieces of a puzzle. Prion. 10, 182–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Chaudhry M.A. 2007. Base excision repair of ionizing radiation-induced DNA damage in G1 and G2 cell cycle phases. Cancer Cell Int. 7, 15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Branzei D., Foiani M. 2008. Regulation of DNA repair throughout the cell cycle. Nat. Rev. Mol. Cell. Biol. 9, 297–308.

    Article  CAS  PubMed  Google Scholar 

  161. Schroering A.G., Edelbrock M.A., Richards T.J., Williams K.J. 2007. The cell cycle and DNA mismatch repair. Exp. Cell Res. 313, 292–304.

    Article  CAS  PubMed  Google Scholar 

  162. Zhao X., Wei C., Li J., Xing P., Li J., Zheng S., Chen X. 2017. Cell cycle-dependent control of homologous recombination. Acta Biochim. Biophys. Sin. (Shanghai). 49, 655–668.

    Article  CAS  PubMed  Google Scholar 

  163. Strathern J.N., Shafer B.K., McGill C.B. 1995. DNA synthesis errors associated with double-strand-break repair. Genetics. 140, 965–972.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Varga T., Aplan P.D. 2005. Chromosomal aberrations induced by double strand DNA breaks. DNA Repair (Amst.). 4, 1038–1046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. McPhie D.L., Coopersmith R., Hines-Peralta A., Chen Y., Ivins K.J., Manly S.P., Kozlowski M.R., Neve K.A., Neve R.L. 2003. DNA synthesis and neuronal apoptosis caused by familial Alzheimer disease mutants of the amyloid precursor protein are mediated by the p21 activated kinase PAK3. J. Neurosci. 23, 6914–6927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Li J.C., Kaminskas E. 1985. Deficient repair of DNA lesions in Alzheimer’s disease fibroblasts. Biochem. Biophys. Res. Commun. 129, 733–738.

    Article  CAS  PubMed  Google Scholar 

  167. Robison S.H., Munzer J.S., Tandan R., Bradley W.G. 1987. Alzheimer’s disease cells exhibit defective repair of alkylating agent-induced DNA damage. Ann. Neurol. 21, 250–258.

    Article  CAS  PubMed  Google Scholar 

  168. Jones S.K., Nee L.E., Sweet L., Polinsky R.J., Bartlett J.D., Bradley W.G., Robison S.H. 1989. Decreased DNA repair in familial Alzheimer’s disease. Mutat. Res. 219, 247–255.

    Article  CAS  PubMed  Google Scholar 

  169. Coppede F., Migliore L. 2009. DNA damage and repair in Alzheimer’s disease. Curr. Alzheimer Res. 6, 36–47.

    Article  CAS  PubMed  Google Scholar 

  170. Weissman L., Jo D.G., Sorensen M.M., de Souza-Pinto N.C., Markesbery W.R., Mattson M.P., Bohr V.A. 2007. Defective DNA base excision repair in brain from individuals with Alzheimer’s disease and amnestic mild cognitive impairment. Nucleic Acids Res. 35, 5545–5555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Canugovi C., Misiak M., Ferrarelli L.K., Croteau D.L., Bohr V.A. 2013. The role of DNA repair in brain related disease pathology. DNA Repair (Amst.). 12, 578–587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Coppede F. 2011. Variants and polymorphisms of DNA base excision repair genes and Alzheimer’s disease. J. Neurol. Sci. 300, 200–201.

    Article  PubMed  Google Scholar 

  173. Gallardo-Orihuela A., Hervas-Corpion I., Hierro-Bujalance C., Sanchez-Sotano D., Jimenez-Gomez G., Mora-Lopez F., Campos-Caro A., Garcia-Alloza M., Valor L.M. 2019. Transcriptional correlates of the pathological phenotype in a Huntington’s disease mouse model. Sci. Rep. 9, 18696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Rogoza T., Goginashvili A., Rodionova S., Ivanov M., Viktorovskaya O., Rubel A., Volkov K., Mironova L. 2010. Non-Mendelian determinant [ISP+] in yeast is a nuclear-residing prion form of the global transcriptional regulator Sfp1. Proc. Natl. Acad. Sci. U. S. A.107, 10573–10577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Drozdova P., Mironova L., Zhouravleva G. 2016. Haploid yeast cells undergo a reversible phenotypic switch associated with chromosome II copy number. BMC Genet. 17, 152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Zadorsky S.P., Sopova Y.V., Andreychuk D.Y., Startsev V.A., Medvedeva V.P., Inge-Vechtomov S.G. 2015. Chromosome VIII disomy influences the nonsense suppression efficiency and transition metal tolerance of the yeast Saccharomyces cerevisiae.Yeast. 32, 479–497.

    Article  CAS  PubMed  Google Scholar 

  177. Borchsenius A.S., Tchourikova A.A., Inge-Vechtomov S.G. 2000. Recessive mutations in SUP35 and SUP45 genes coding for translation release factors affect chromosome stability in Saccharomyces cerevisiae.Curr. Genet. 37, 285–291.

    Article  CAS  PubMed  Google Scholar 

  178. Tikhomirova V.L., Inge-Vechtomov S.G. 1996. Sensitivity of sup35 and sup45 suppressor mutants in Saccharomyces cerevisiae to the anti-microtubule drug benomyl. Curr. Genet. 30, 44–49.

    Article  CAS  PubMed  Google Scholar 

  179. Li X., Rayman J.B., Kandel E.R., Derkatch I.L. 2014. Functional role of Tia1/Pub1 and Sup35 prion domains: Directing protein synthesis machinery to the tubulin cytoskeleton. Mol. Cell. 55, 305–318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Valouev I.A., Kushnirov V.V., Ter-Avanesyan M.D. 2002. Yeast polypeptide chain release factors eRF1 and eRF3 are involved in cytoskeleton organization and cell cycle regulation. Cell. Motil. Cytoskeleton. 52, 161–173.

    Article  CAS  PubMed  Google Scholar 

  181. Basu J., Williams B.C., Li Z., Williams E.V., Goldberg M.L. 1998. Depletion of a Drosophila homolog of yeast Sup35p disrupts spindle assembly, chromosome segregation, and cytokinesis during male meiosis. Cell. Motil. Cytoskeleton. 39, 286–302.

    Article  CAS  PubMed  Google Scholar 

  182. Wu H.Y., Kuo P.C., Wang Y.T., Lin H.T., Roe A.D., Wang B.Y., Han C.L., Hyman B.T., Chen Y.J., Tai H.C. 2018. Beta-amyloid induces pathology-related patterns of tau hyperphosphorylation at synaptic terminals. J. Neuropathol. Exp. Neurol. 77, 814–826.

    Article  CAS  PubMed  Google Scholar 

  183. Mao P., Reddy P.H. 2011. Aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction in Alzheimer’s disease: Implications for early intervention and therapeutics. Biochim. Biophys. Acta. 1812, 1359–1370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Julien C., Tomberlin C., Roberts C.M., Akram A., Stein G.H., Silverman M.A., Link C.D. 2018. In vivo induction of membrane damage by beta-amyloid peptide oligomers. Acta Neuropathol. Commun. 6, 131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Alonso A.D., Cohen L.S., Corbo C., Morozova V., ElIdrissi A., Phillips G., Kleiman F.E. 2018. Hyperphosphorylation of Tau associates with changes in its function beyond microtubule stability. Front. Cell. Neurosci. 12, 338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Nieznanski K., Podlubnaya Z.A., Nieznanska H. 2006. Prion protein inhibits microtubule assembly by inducing tubulin oligomerization. Biochem. Biophys. Res. Commun. 349, 391–399.

    Article  CAS  PubMed  Google Scholar 

  187. Tang Y.C., Amon A. 2013. Gene copy-number alterations: A cost–benefit analysis. Cell. 152, 394–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Mulla W., Zhu J., Li R. 2014. Yeast: A simple model system to study complex phenomena of aneuploidy. FEMS Microbiol. Rev. 38, 201–212.

    Article  CAS  PubMed  Google Scholar 

  189. Torres E.M., Sokolsky T., Tucker C.M., Chan L.Y., Boselli M., Dunham M.J., Amon A. 2007. Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science. 317, 916–924.

    Article  CAS  PubMed  Google Scholar 

  190. Torres E.M., Williams B.R., Tang Y.C., Amon A. 2010. Thoughts on aneuploidy. Cold Spring Harb. Symp. Quant. Biol. 75, 445–451.

    Article  CAS  PubMed  Google Scholar 

  191. Oromendia A.B., Dodgson S.E., Amon A. 2012. Aneuploidy causes proteotoxic stress in yeast. Genes Dev. 26, 2696–2708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Tang Y.C., Williams B.R., Siegel J.J., Amon A. 2011. Identification of aneuploidy-selective antiproliferation compounds. Cell. 144, 499–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Stingele S., Stoehr G., Peplowska K., Cox J., Mann M., Storchova Z. 2012. Global analysis of genome, transcriptome and proteome reveals the response to aneuploidy in human cells. Mol. Syst. Biol. 8, 608.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Donnelly N., Storchova Z. 2014. Dynamic karyotype, dynamic proteome: buffering the effects of aneuploidy. Biochim. Biophys. Acta. 1843, 473–481.

    Article  CAS  PubMed  Google Scholar 

  195. Santaguida S., Vasile E., White E., Amon A. 2015. Aneuploidy-induced cellular stresses limit autophagic degradation. Genes Dev. 29, 2010–2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Yurov Yu.B., Vorsanova S.G., Solov’ev I.V., Iourov I.Yu. 2010. Instability of chromosomes in human nerve cells (normal and with neuromental diseases). Russ. J. Genet.46 (10), 1194–1196.

    Article  CAS  Google Scholar 

  197. Rehen S.K., Yung Y.C., McCreight M.P., Kaushal D., Yang A.H., Almeida B.S., Kingsbury M.A., Cabral K.M., McConnell M.J., Anliker B., Fontanoz M., Chun J. 2005. Constitutional aneuploidy in the normal human brain. J. Neurosci. 25, 2176–2180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Rehen S.K., McConnell M.J., Kaushal D., Kingsbury M.A., Yang A.H., Chun J. 2001. Chromosomal variation in neurons of the developing and adult mammalian nervous system. Proc. Natl. Acad. Sci. U. S. A.98, 13361–13366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Epstein C.J., Foster D.B., DeArmond S.J., Prusiner S.B. 1991. Acceleration of scrapie in trisomy 16 diploid aggregation chimeras. Ann. Neurol. 29, 95–97.

    Article  CAS  PubMed  Google Scholar 

  200. Popovitch E.R., Wisniewski H.M., Barcikowska M., Silverman W., Bancher C., Sersen E., Wen G.Y. 1990. Alzheimer neuropathology in non-Down’s syndrome mentally retarded adults. Acta Neuropathol. 80, 362–367.

    Article  CAS  PubMed  Google Scholar 

  201. Wisniewski K.E., Dalton A.J., McLachlan C., Wen G.Y., Wisniewski H.M. 1985. Alzheimer’s disease in Down’s syndrome: Clinicopathologic studies. Neurology. 35, 957–961.

    Article  CAS  PubMed  Google Scholar 

  202. Oliver C., Holland A.J. 1986. Down’s syndrome and Alzheimer’s disease: A review. Psychol. Med. 16, 307–322.

    Article  CAS  PubMed  Google Scholar 

  203. Patterson D., Gardiner K., Kao F.T., Tanzi R., Watkins P., Gusella J.F. 1988. Mapping of the gene encoding the beta-amyloid precursor protein and its relationship to the Down syndrome region of chromosome 21. Proc. Natl. Acad. Sci. U. S. A.85, 8266–8270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Oyama F., Cairns N.J., Shimada H., Oyama R., T-itani K., Ihara Y. 1994. Down’s syndrome: Up-regulation of beta-amyloid protein precursor and tau mRNAs and their defective coordination. J. Neurochem. 62, 1062–1066.

    Article  CAS  PubMed  Google Scholar 

  205. Patterson D., Costa A.C. 2005. Down syndrome and genetics: A case of linked histories. Nat. Rev. Genet. 6, 137–147.

    Article  CAS  PubMed  Google Scholar 

  206. Prasher V.P., Farrer M.J., Kessling A.M., Fisher E.M., West R.J., Barber P.C., Butler A.C. 1998. Molecular mapping of Alzheimer-type dementia in Down’s syndrome. Ann. Neurol. 43, 380–383.

    Article  CAS  PubMed  Google Scholar 

  207. Blom E.S., Viswanathan J., Kilander L., Helisalmi S., Soininen H., Lannfelt L., Ingelsson M., Glaser A., Hiltunen M. 2008. Low prevalence of APP duplications in Swedish and Finnish patients with early-onset Alzheimer’s disease. Eur. J. Hum. Genet. 16, 171–175.

    Article  CAS  PubMed  Google Scholar 

  208. Rovelet-Lecrux A., Hannequin D., Raux G., Le Meur N., Laquerriere A., Vital A., Dumanchin C., Feuillette S., Brice A., Vercelletto M., Dubas F., Frebourg T., Campion D. 2006. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat. Genet. 38, 24–26.

    Article  CAS  PubMed  Google Scholar 

  209. Potter H. 1991. Review and hypothesis: Alzheimer disease and Down syndrome–chromosome 21 nondisjunction may underlie both disorders. Am. J. Hum. Genet. 48, 1192–1200.

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Heston L.L., Mastri A.R. 1977. The genetics of Alzheimer’s disease: Associations with hematologic malignancy and Down’s syndrome. Arch. Gen. Psychiatry. 34, 976–981.

    Article  CAS  PubMed  Google Scholar 

  211. Heyman A., Wilkinson W.E., Hurwitz B.J., Schmechel D., Sigmon A.H., Weinberg T., Helms M.J., Swift M. 1983. Alzheimer’s disease: Genetic aspects and associated clinical disorders. Ann. Neurol. 14, 507–515.

    Article  CAS  PubMed  Google Scholar 

  212. Geller L.N., Potter H. 1999. Chromosome missegregation and trisomy 21 mosaicism in Alzheimer’s disease. Neurobiol. Dis. 6, 167–179.

    Article  CAS  PubMed  Google Scholar 

  213. Schupf N., Kapell D., Lee J.H., Ottman R., Mayeux R. 1994. Increased risk of Alzheimer’s disease in mothers of adults with Down’s syndrome. Lancet. 344, 353–356.

    Article  CAS  PubMed  Google Scholar 

  214. Potter H., Granic A., Caneus J. 2016. Role of trisomy 21 mosaicism in sporadic and familial Alzheimer’s disease. Curr. Alzheimer Res. 13, 7–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Wang X., DeKosky S.T., Luedecking-Zimmer E., Ganguli M., Kamboh M.I. 2002. Genetic variation in alpha(1)-antichymotrypsin and its association with Alzheimer’s disease. Hum. Genet. 110, 356–365.

    Article  CAS  PubMed  Google Scholar 

  216. Ye Z., Ye Q., Shao B., He J., Zhu Z., Cheng J., Chen Y., Chen S., Huang X. 2015. Association between alpha-1 antichymotrypsin gene A/T polymorphism and primary intracerebral hemorrhage: A meta-analysis. Int. J. Clin. Exp. Med. 8, 20796–20804.

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Lanoiselee H.M., Nicolas G., Wallon D., Rovelet-Lecrux A., Lacour M., Rousseau S., Richard A.C., Pasquier F., Rollin-Sillaire A., Martinaud O., Quillard-Muraine M., de la Sayette V., Boutoleau-Bretonniere C., Etcharry-Bouyx F., Chauvire V., et al. 2017. APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: A genetic screening study of familial and sporadic cases. PLoS Med. 14, e1002270.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Roses A.D. 1996. Apolipoprotein E and Alzheimer’s disease. A rapidly expanding field with medical and epidemiological consequences. Ann. N. Y. Acad. Sci. 802, 50–57.

    Article  CAS  PubMed  Google Scholar 

  219. Strittmatter W.J., Roses A.D. 1995. Apolipoprotein E and Alzheimer disease. Proc. Natl. Acad. Sci. U. S. A.92, 4725–4727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Ma J., Yee A., Brewer H.B., Jr., Das S., Potter H. 1994. Amyloid-associated proteins alpha 1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer beta-protein into filaments. Nature. 372, 92–94.

    Article  CAS  PubMed  Google Scholar 

  221. Zekanowski C., Wojda U. 2009. Aneuploidy, chromosomal missegregation, and cell cycle reentry in Alzheimer’s disease. Acta Neurobiol. Exp. (Wars.). 69, 232–253.

    Google Scholar 

  222. Doshay L.J. 1954. Problem situations in the treatment of paralysis agitans. J. Am. Med. Assoc. 156, 680–684.

    Article  CAS  PubMed  Google Scholar 

  223. Driver J.A., Kurth T., Buring J.E., Gaziano J.M., Logroscino G. 2007. Prospective case-control study of nonfatal cancer preceding the diagnosis of Parkinson’s disease. Cancer Causes Control. 18, 705–711.

    Article  PubMed  Google Scholar 

  224. Driver J.A., Logroscino G., Buring J.E., Gaziano J.M., Kurth T. 2007. A prospective cohort study of cancer incidence following the diagnosis of Parkinson’s disease. Cancer Epidemiol. Biomarkers Prev. 16, 1260–1265.

    Article  PubMed  Google Scholar 

  225. Elbaz A., Peterson B.J., Yang P., Van Gerpen J.A., Bower J.H., Maraganore D.M., McDonnell S.K., Ahlskog J.E., Rocca W.A. 2002. Nonfatal cancer preceding Parkinson’s disease: a case-control study. Epidemiology. 13, 157–164.

    Article  PubMed  Google Scholar 

  226. Elbaz A., Peterson B.J., Bower J.H., Yang P., Mar-aganore D.M., McDonnell S.K., Ahlskog J.E., Rocca W.A. 2005. Risk of cancer after the diagnosis of Parkinson’s disease: A historical cohort study. Mov. Disord. 20, 719–725.

    Article  PubMed  Google Scholar 

  227. Fois A.F., Wotton C.J., Yeates D., Turner M.R., Goldacre M.J. 2010. Cancer in patients with motor neuron disease, multiple sclerosis and Parkinson’s disease: Record linkage studies. J. Neurol. Neurosurg. Psychiatry. 81, 215–221.

    Article  PubMed  Google Scholar 

  228. Olsen J.H., Friis S., Frederiksen K. 2006. Malignant melanoma and other types of cancer preceding Parkinson disease. Epidemiology. 17, 582–587.

    Article  PubMed  Google Scholar 

  229. Olsen J.H., Friis S., Frederiksen K., McLaughlin J.K., Mellemkjaer L., Moller H. 2005. Atypical cancer pattern in patients with Parkinson’s disease. Br. J. Cancer. 92, 201–205.

    Article  CAS  PubMed  Google Scholar 

  230. Driver J.A. 2014. Inverse association between cancer and neurodegenerative disease: Review of the epidemiologic and biological evidence. Biogerontology. 15, 547–557.

    Article  CAS  PubMed  Google Scholar 

  231. Bajaj A., Driver J.A., Schernhammer E.S. 2010. Parkinson’s disease and cancer risk: A systematic review and meta-analysis. Cancer Causes Control. 21, 697–707.

    Article  PubMed  Google Scholar 

  232. Musicco M., Adorni F., Di Santo S., Prinelli F., Pettenati C., Caltagirone C., Palmer K., Russo A. 2013. Inverse occurrence of cancer and Alzheimer disease: A population-based incidence study. Neurology. 81, 322–328.

    Article  PubMed  Google Scholar 

  233. Roe C.M., Fitzpatrick A.L., Xiong C., Sieh W., Kuller L., Miller J.P., Williams M.M., Kopan R., Behrens M.I., Morris J.C. 2010. Cancer linked to Alzheimer disease but not vascular dementia. Neurology. 74, 106–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Frain L., Swanson D., Cho K., Gagnon D., Lu K.P., Betensky R.A., Driver J. 2017. Association of cancer and Alzheimer’s disease risk in a national cohort of veterans. Alzheimers Dement. 13, 1364–1370.

    Article  PubMed  PubMed Central  Google Scholar 

  235. Sorensen S.A., Fenger K., Olsen J.H. 1999. Significantly lower incidence of cancer among patients with Huntington disease: An apoptotic effect of an expanded polyglutamine tract? Cancer. 86, 1342–1346.

    Article  CAS  PubMed  Google Scholar 

  236. Yamada M., Sasaki H., Mimori Y., Kasagi F., Sudoh S., Ikeda J., Hosoda Y., Nakamura S., Kodama K. 1999. Prevalence and risks of dementia in the Japanese population: RERF’s adult health study Hiroshima subjects. Radiation effects research foundation. J. Am. Geriatr. Soc. 47, 189–195.

    Article  CAS  PubMed  Google Scholar 

  237. Koval L., Proshkina E., Shaposhnikov M., Moskalev A. 2020. The role of DNA repair genes in radiation-induced adaptive response in Drosophila melanogaster is differential and conditional. Biogerontology. 21, 45–56.

    Article  CAS  PubMed  Google Scholar 

  238. Gueguen Y., Bontemps A., Ebrahimian T.G. 2019. Adaptive responses to low doses of radiation or chemicals: Their cellular and molecular mechanisms. Cell. Mol. Life Sci. 76, 1255–1273.

    Article  CAS  PubMed  Google Scholar 

  239. Mattson M.P., Calabrese E.J. 2010. Hormesis: what it is and why it matters. In Hormesis: A Revolution in Biology, Toxicology and Medicine. Totowa, NJ: Humana Press, pp. 1–13.

    Book  Google Scholar 

  240. Hwang S., Jeong H., Hong E.H., Joo H.M., Cho K.S., Nam S.Y. 2019. Low-dose ionizing radiation alleviates Abeta42-induced cell death via regulating AKT and p38 pathways in Drosophila Alzheimer’s disease models. Biol. Open. 8 (2), bio036657. https://doi.org/10.1242/bio.036657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Ishimaru D., Andrade L.R., Teixeira L.S., Quesado P.A., Maiolino L.M., Lopez P.M., Cordeiro Y., Costa L.T., Heckl W.M., Weissmuller G., Foguel D., Silva J.L. 2003. Fibrillar aggregates of the tumor suppressor p53 core domain. Biochemistry. 42, 9022–9027.

    Article  CAS  PubMed  Google Scholar 

  242. Ano Bom A.P., Rangel L.P., Costa D.C., de Oliveira G.A., Sanches D., Braga C.A., Gava L.M., Ramos C.H., Cepeda A.O., Stumbo A.C., De Moura Gallo C.V., Cordeiro Y., Silva J.L. 2012. Mutant p53 aggregates into prion-like amyloid oligomers and fibrils: Implications for cancer. J. Biol. Chem. 287, 28152–28162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Lim S., Yoo B.K., Kim H.S., Gilmore H.L., Lee Y., Lee H.P., Kim S.J., Letterio J., Lee H.G. 2014. Amyloid-beta precursor protein promotes cell proliferation and motility of advanced breast cancer. BMC Cancer. 14, 928.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Itoh H., Kataoka H., Koita H., Nabeshima K., Inoue T., Kangawa K., Koono M. 1991. Establishment of a new human cancer cell line secreting protease nexin-II/amyloid beta protein precursor derived from squamous-cell carcinoma of lung. Int. J. Cancer. 49, 436–443.

    Article  CAS  PubMed  Google Scholar 

  245. Yang Z., Fan Y., Deng Z., Wu B., Zheng Q. 2012. Amyloid precursor protein as a potential marker of malignancy and prognosis in papillary thyroid carcinoma. Oncol. Lett. 3, 1227–1230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Miyazaki T., Ikeda K., Horie-Inoue K., Inoue S. 2014. Amyloid precursor protein regulates migration and metalloproteinase gene expression in prostate cancer cells. Biochem. Biophys. Res. Commun. 452, 828–833.

    Article  CAS  PubMed  Google Scholar 

  247. Botelho M.G., Wang X., Arndt-Jovin D.J., Becker D., Jovin T.M. 2010. Induction of terminal differentiation in melanoma cells on downregulation of beta-amyloid precursor protein. J Invest. Dermatol. 130, 1400–1410.

    Article  CAS  PubMed  Google Scholar 

  248. Peters H.L., Yan Y., Nordgren T.M., Cutucache C.E., Joshi S.S., Solheim J.C. 2013. Amyloid precursor-like protein 2 suppresses irradiation-induced apoptosis in Ewing sarcoma cells and is elevated in immune-evasive Ewing sarcoma cells. Cancer Biol. Ther. 14, 752–760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Liang J., Pan Y., Zhang D., Guo C., Shi Y., Wang J., Chen Y., Wang X., Liu J., Guo X., Chen Z., Qiao T., Fan D. 2007. Cellular prion protein promotes proliferation and G1/S transition of human gastric cancer cells SGC7901 and AGS. FASEB J.21, 2247–2256.

    Article  CAS  PubMed  Google Scholar 

  250. Malaga-Trillo E., Solis G.P., Schrock Y., Geiss C., Luncz L., Thomanetz V., Stuermer C.A. 2009. Regulation of embryonic cell adhesion by the prion protein. PLoS Biol. 7, e55.

    Article  PubMed  CAS  Google Scholar 

  251. Du L., Rao G., Wang H., Li B., Tian W., Cui J., He L., Laffin B., Tian X., Hao C., Liu H., Sun X., Zhu Y., Tang D.G., Mehrpour M., et al. 2013. CD44-positive cancer stem cells expressing cellular prion protein contribute to metastatic capacity in colorectal cancer. Cancer Res. 73, 2682–2694.

    Article  CAS  PubMed  Google Scholar 

  252. Cheng Y., Tao L., Xu J., Li Q., Yu J., Jin Y., Chen Q., Xu Z., Zou Q., Liu X. 2014. CD44/cellular prion protein interact in multidrug resistant breast cancer cells and correlate with responses to neoadjuvant chemotherapy in breast cancer patients. Mol. Carcinog. 53, 686–697.

    Article  CAS  PubMed  Google Scholar 

  253. Danish Rizvi S.M., Hussain T., Subaiea G.M., Shakil S., Ahmad A. 2018. Therapeutic targeting of amyloid precursor protein and its processing enzymes for breast cancer treatment. Curr. Protein Pept. Sci. 19, 841–849

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (RFBR, project number 19-14-50236) and by the Government of the Russian Federation through the ITMO Fellowship and Professorship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Andreychuk.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interests.

This work does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Abbreviations: Aβ, amyloid β; ALS, amyotrophic lateral sclerosis; AP, apurine site; ROS, reactive oxygen species; AD, Alzheimer’s disease; PD, Parkinson’s disease; HD, Huntington disease; TP, template process; DS, Down syndrome; CD, central dogma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreychuk, Y.V., Zadorsky, S.P., Zhuk, A.S. et al. Relationship between Type I and Type II Template Processes: Amyloids and Genome Stability. Mol Biol 54, 661–683 (2020). https://doi.org/10.1134/S0026893320050027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893320050027

Keywords:

Navigation