Skip to main content
Log in

Retrovirus Restriction Factor TRIM5α: The Mechanism of Action and Prospects for Use in Gene Therapy of HIV Infection

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—

It is commonly known that the antiviral activity of the TRIM5α protein, the intracellular retrovirus restriction factor, underlies the resistance of the Old World monkeys to HIV-1. This fact suggests that TRIM5α can potentially be used to cure HIV-1 infection in humans. The present review considers the mechanisms of HIV-1 replication inhibition by the TRIM5α protein and the prospects for using it in gene therapy of HIV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Reymond A., Meroni G., Fantozzi A., Merla G., Cairo S., Luzi L., Riganelli D., Zanaria E., Messali S., Cainarca S., Guffanti A., Minucci S., Pelicci P. G., Ballabio A. 2001. The tripartite motif family identifies cell compartments. EMBO J.20 (9), 2140–2151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. van Gent M., Sparrer K., Gack M.U. 2018. TRIM proteins and their roles in antiviral host defenses. Annu. Rev. Virol.5 (1), 385–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stremlau M., Owens C.M., Perron M.J., Kiessling M., Autissier P., Sodroski J. 2004. The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys. Nature.427 (6977), 848–853.

    Article  CAS  PubMed  Google Scholar 

  4. Yap M.W., Nisole S., Lynch C., Stoye J.P. 2004. Trim5alpha protein restricts both HIV-1 and murine leukemia virus. Proc. Natl. Acad. Sci. U. S. A.101 (29), 10786–10791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Keckesova Z., Ylinen L.M., Towers G.J. 2004. The human and African green monkey TRIM5alpha genes encode Ref1 and Lv1 retroviral restriction factor activities. Proc. Natl. Acad. Sci. U. S. A.101 (29), 10780–10785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hatziioannou T., Perez-Caballero D., Yang A., Cowan S., Bieniasz P.D. 2004. Retrovirus resistance factors Ref1 and Lv1 are species-specific variants of TRIM5alpha. Proc. Natl. Acad. Sci. U. S. A.101 (29), 10774–10779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Perron M.J., Stremlau M., Lee M., Javanbakht H., Song B., Sodroski J. 2007. The human TRIM5alpha restriction factor mediates accelerated uncoating of the N-tropic murine leukemia virus capsid. J. Virol.81 (5), 2138–2148.

    Article  CAS  PubMed  Google Scholar 

  8. Nakayama E.E., Shioda T. 2015. Impact of TRIM5α in vivo.AIDS (London). 29 (14), 1733–1743.

    Article  CAS  PubMed  Google Scholar 

  9. Nakayama E.E., Miyoshi H., Nagai Y., Shioda T. 2005. A specific region of 37 amino acid residues in the SPRY (B30.2_) domain of African green monkey TRIM5alpha determines species-specific restriction of simian immunodeficiency virus SIVmac infection. J. Virol.79 (14), 8870–8877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stremlau M., Perron M., Welikala S., Sodroski J. 2005. Species-specific variation in the B30.2 (SPRY) domain of TRIM5alpha determines the potency of human immunodeficiency virus restriction. J. Virol.79 (5), 3139–3145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yap M.W., Nisole S., Stoye J.P. 2005. A single amino acid change in the SPRY domain of human Trim5alpha leads to HIV-1 restriction. Curr. Biol.15 (1), 73–78.

    Article  CAS  PubMed  Google Scholar 

  12. Sebastian S., Luban J. 2005. TRIM5α selectively binds a restriction-sensitive retroviral capsid. Retrovirology. 2, 40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Stremlau M., Perron M., Lee M., Li Y., Song B., Javanbakht H., Diaz-Griffero F., Anderson D.J., Sundquist W.I., Sodroski J. 2006. Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor. Proc. Natl. Acad. Sci. U. S. A.103 (14), 5514–5519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ganser B.K., Li S., Klishko V.Y., Finch J.T., Sundquist W.I. 1999. Assembly and analysis of conical models for the HIV-1 core. Science. 283 (5398), 80–83.

    Article  CAS  PubMed  Google Scholar 

  15. Gres A.T., Kirby K.A., KewalRamani V.N., Tanner J.J., Pornillos O., Sarafianos S.G. 2015. X-ray crystal structures of native HIV-1 capsid protein reveal conformational variability. Science.349 (6243), 99–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mattei S., Glass B., Hagen W.J., Kräusslich H.G., Briggs J.A. 2016. The structure and flexibility of conical HIV-1 capsids determined within intact virions. Science.354 (6318), 1434–1437.

    Article  CAS  PubMed  Google Scholar 

  17. Ganser-Pornillos B.K., Chandrasekaran V., Pornillos O., Sodroski J.G., Sundquist W.I., Yeager M. 2011. Hexagonal assembly of a restricting TRIM5alpha protein. Proc. Natl. Acad. Sci. U. S. A.108 (2), 534–539.

    Article  CAS  PubMed  Google Scholar 

  18. Li Y.L., Chandrasekaran V., Carter S.D., Woodward C.L., Christensen D.E., Dryden K.A., Pornillos O., Yeager M., Ganser-Pornillos B.K., Jensen G.J., Sundquist W.I. 2016. Primate TRIM5 proteins form hexagonal nets on HIV-1 capsids. eLife.5, e16269.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Biris N., Yang Y., Taylor A.B., Tomashevski A., Guo M., Hart P.J., Diaz-Griffero F., Ivanov D.N. 2012. Structure of the rhesus monkey TRIM5α PRYSPRY domain, the HIV capsid recognition module. Proc. Natl. Acad. Sci. U. S. A.109 (33), 13278–13283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Biris N., Tomashevski A., Bhattacharya A., Diaz-Griffero F., Ivanov D.N. 2013. Rhesus monkey TRIM5α SPRY domain recognizes multiple epitopes that span several capsid monomers on the surface of the HIV-1 mature viral core. J. Mol. Biol. 425 (24), 5032–5044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang H., Ji X., Zhao G., Ning J., Zhao Q., Aiken C., Gronenborn A.M., Zhang P., Xiong Y. 2012. Structural insight into HIV-1 capsid recognition by rhesus TRIM5α. Proc. Natl. Acad. Sci. U. S. A.109 (45), 18372–18377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Diaz-Griffero F., Qin X.R., Hayashi F., Kigawa T., Finzi A., Sarnak Z., Lienlaf M., Yokoyama S., Sodroski J. 2009. A B-box 2 surface patch important for TRIM5alpha self-association, capsid binding avidity, and retrovirus restriction. J. Virol. 83 (20), 10737–10751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Skorupka K.A., Roganowicz M.D., Christensen D.E., Wan Y., Pornillos O., Ganser-Pornillos B.K. 2019. Hierarchical assembly governs TRIM5α recognition of HIV-1 and retroviral capsids. Sci. Adv.5 (11), 3631.

    Article  CAS  Google Scholar 

  24. Li X., Sodroski J. 2008. The TRIM5alpha B-box 2 domain promotes cooperative binding to the retroviral capsid by mediating higher-order self-association. J. Virol. 82 (23), 11495–11502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Langelier C.R., Sandrin V., Eckert D.M., Christensen D.E., Chandrasekaran V., Alam S. L., Aiken C., Olsen J.C., Kar A.K., Sodroski J.G., Sundquist W.I. 2008. Biochemical characterization of a recombinant TRIM5alpha protein that restricts human immunodeficiency virus type 1 replication. J. Virol.82 (23), 11682–11694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sanchez J.G., Okreglicka K., Chandrasekaran V., Welker J.M., Sundquist W.I., Pornillos O. 2014. The tripartite motif coiled-coil is an elongated antiparallel hairpin dimer. Proc. Natl. Acad. Sci. U. S. A.111 (7), 2494–2499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Keown J., Yang J., Douglas J., Goldstone D. 2016. Characterisation of assembly and ubiquitylation by the RBCC motif of Trim5α. Sci. Rep. 6, 26837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Roganowicz M.D., Komurlu S., Mukherjee S., Plewka J., Alam S.L., Skorupka K.A., Wan Y., Dawidowski D., Cafiso D.S., Ganser-Pornillos B.K., Campbell E.M., Pornillos O. 2017. TRIM5α SPRY/coiled-coil interactions optimize avid retroviral capsid recognition. PLoS Pathogens.13 (10), e1006686.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Wagner J.M., Roganowicz M., Skorupka K., Alam S.L., Christensen D., Doss G., Wan Y., Frank G.A., Ganser-Pornillos B.K., Sundquist W.I., Pornillos O. 2016. Mechanism of B-box 2 domain-mediated higher-order assembly of the retroviral restriction factor TRIM5α. eLife.5, e16309.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Xu L., Yang L., Moitra P.K., Hashimoto K., Rallabhandi P., Kaul S., Meroni G., Jensen J.P., Weissman A.M., D’Arpa P. 2003. BTBD1 and BTBD2 colocalize to cytoplasmic bodies with the RBCC/tripartite motif protein, TRIM5δ. Exp. Cell Res.288 (1), 84–93.

    Article  CAS  PubMed  Google Scholar 

  31. Campbell E.M., Dodding M.P., Yap M.W., Wu X., Gallois-Montbrun S., Malim M.H., Stoye J.P., Hope T.J. 2007. TRIM5 alpha cytoplasmic bodies are highly dynamic structures. Mol. Biol. Cell. 18 (6), 2102–2111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Neagu M.R., Ziegler P., Pertel T., Strambio-De-Castillia C., Grütter C., Martinetti G., Mazzucchelli L., Grütter M., Manz M.G., Luban J. 2009. Potent inhibition of HIV-1 by TRIM5-cyclophilin fusion proteins engineered from human components. J. Clin. Invest.119 (10), 3035–3047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Richardson M.W., Guo L., Xin F., Yang X., Riley J.L. 2014. Stabilized human TRIM5α protects human T cells from HIV-1 infection. Mol. Ther. 22 (6), 1084–1095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sawyer S.L., Wu L.I., Emerman M., Malik H.S. 2005. Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain. Proc. Natl. Acad. Sci. U. S. A.102 (8), 2832–2837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Perez-Caballero D., Hatziioannou T., Yang A., Cowan S., Bieniasz P.D. 2005. Human tripartite motif 5alpha domains responsible for retrovirus restriction activity and specificity. J. Virol.79 (14), 8969–8978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wagner J.M., Christensen D.E., Bhattacharya A., Dawidziak D.M., Roganowicz M.D., Wan Y., Pumroy R.A., Demeler B., Ivanov D.N., Ganser-Pornillos B.K., Sundquist W.I., Pornillos O. 2018. General model for retroviral capsid pattern recognition by TRIM5 proteins. J. Virol.92 (4), e01563-17.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Morger D., Zosel F., Bühlmann M., Züger S., Mittelviefhaus M., Schuler B., Luban J., Grütter M.G. 2018. The three-fold axis of the HIV-1 capsid lattice is the species-specific binding interface for TRIM5α. J. Virol.92 (5), e01541-17.

    PubMed  PubMed Central  Google Scholar 

  38. Anderson J., Akkina R. 2008. Human immunodeficiency virus type 1 restriction by human-rhesus chimeric tripartite motif 5alpha (TRIM 5alpha) in CD34(+) cell-derived macrophages in vitro and in T cells in vivo in severe combined immunodeficient (SCID-hu) mice transplanted with human fetal tissue. Hum. Gene Ther.19 (3), 217–228.

    Article  CAS  PubMed  Google Scholar 

  39. Pham Q.T., Bouchard A., Grütter M.G., Berthoux L. 2010. Generation of human TRIM5alpha mutants with high HIV-1 restriction activity. Gene Ther.17 (7), 859–871.

    Article  CAS  PubMed  Google Scholar 

  40. Jung U., Urak K., Veillett M., Nepveu-Traversy M.É., Pham Q.T., Hamel S., Rossi J.J., Berthoux L. 2015. Preclinical assessment of mutant human TRIM5α as an anti-HIV-1 transgene. Hum. Gene Ther.26 (10), 664–679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dufour C., Claudel A., Joubarne N., Merindol N., Maisonnet T., Masroori N., Plourde M.B., Berthoux L. 2018. Editing of the human TRIM5 gene to introduce mutations with the potential to inhibit HIV-1. PLoS One.13 (1), e0191709.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Ambrose Z., Aiken C. 2014. HIV-1 uncoating: Connection to nuclear entry and regulation by host proteins. Virology. 454–455, 371–379.

    Article  PubMed  CAS  Google Scholar 

  43. Campbell E.M., Hope T.J. 2015. HIV-1 capsid: the multifaceted key player in HIV-1 infection. Nat. Rev. Microbiol.13 (8), 471–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Perron M.J., Stremlau M., Song B., Ulm W., Mulligan R.C., Sodroski J. 2004. TRIM5alpha mediates the postentry block to N-tropic murine leukemia viruses in human cells. Proc. Natl. Acad. Sci. U. S. A.101 (32), 11827–11832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Anderson J.L., Campbell E.M., Wu X., Vandegraaff N., Engelman A., Hope, T.J. 2006. Proteasome inhibition reveals that a functional preintegration complex intermediate can be generated during restriction by diverse TRIM5 proteins. J. Virol.80 (19), 9754–9760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lukic Z., Hausmann S., Sebastian S., Rucci J., Sastri J., Robia S.L., Luban J., Campbell E.M. 2011. TRIM5α associates with proteasomal subunits in cells while in complex with HIV-1 virions. Retrovirology.8, 93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Danielson C.M., Cianci G.C., Hope T.J. 2012. Recruitment and dynamics of proteasome association with rhTRIM5α cytoplasmic complexes during HIV-1 infection. Traffic (Copenhagen). 13 (9), 1206–1217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jimenez-Guardeño J.M., Apolonia L., Betancor G., Malim M.H. 2019. Immunoproteasome activation enables human TRIM5α restriction of HIV-1. Nat. Microbiol.4 (6), 933–940.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Diaz-Griffero F., Li X., Javanbakht H., Song B., Welikala S., Stremlau M., Sodroski J. 2006. Rapid turnover and polyubiquitylation of the retroviral restriction factor TRIM5. Virology.349 (2), 300–315.

    Article  CAS  PubMed  Google Scholar 

  50. Fletcher A.J., Christensen D.E., Nelson C., Tan C.P., Schaller T., Lehner P.J., Sundquist W.I., Towers G.J. 2015. TRIM5α requires Ube2W to anchor Lys63-linked ubiquitin chains and restrict reverse transcription. EMBO J.34 (15), 2078–2095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fletcher A.J., Vaysburd M., Maslen S., Zeng J., Skehel J.M., Towers G.J., James L.C. 2018. Trivalent RING assembly on retroviral capsids activates TRIM5 ubiquitination and innate immune signaling. Cell Host Microbe. 24 (6), 761–775. e6.

  52. Rold C.J., Aiken C. 2008. Proteasomal degradation of TRIM5alpha during retrovirus restriction. PLoS Pathogens.4 (5), e1000074.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Roa A., Hayashi F., Yang Y., Lienlaf M., Zhou J., Shi J., Watanabe S., Kigawa T., Yokoyama S., Aiken C., Diaz-Griffero F. 2012. RING domain mutations uncouple TRIM5α restriction of HIV-1 from inhibition of reverse transcription and acceleration of uncoating. J. Virol.86 (3), 1717–1727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mandell M.A., Jain A., Arko-Mensah J., Chauhan S., Kimura T., Dinkins C., Silvestri G., Münch J., Kirchhoff F., Simonsen A., Wei Y., Levine B., Johansen T., Deretic V. 2014. TRIM proteins regulate autophagy and can target autophagic substrates by direct recognition. Dev. Cell.30 (4), 394–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Keown J.R., Black M.M., Ferron A., Yap M., Barnett M.J., Pearce F.G., Stoye J.P., Goldstone D.C. 2018. A helical LC3-interacting region mediates the interaction between the retroviral restriction factor Trim5α and mammalian autophagy-related ATG8 proteins. J. Biol. Chem.293 (47), 18378–18386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Imam S., Talley S., Nelson R.S., Dharan A., O’Connor C., Hope T.J., Campbell E.M. 2016. TRIM5α degradation via autophagy is not required for retroviral restriction. J. Virol.90 (7), 3400–3410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ribeiro C.M.S., Sarrami-Forooshani R., Setiawan L.C., Zijlstra-Willem E.M., van Hamme J.L., Tigchelaar W., van der Wel N.N., Kootstra N.A., Gringhuis S.I. Geijtenbeek T.B.H. 2016. Receptor usage dictates HIV-1 restriction by human TRIM5α in dendritic cell subsets. Nature.540, 448–452.

    Article  CAS  PubMed  Google Scholar 

  58. Campbell E.M., Perez O., Anderson J.L., Hope T.J. 2008. Visualization of a proteasome-independent intermediate during restriction of HIV-1 by rhesus TRIM5alpha. J. Cell Biol.180 (3), 549–561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Campbell E.M., Weingart J., Sette P., Opp S., Sastri J., O’Connor S.K., Talley S., Diaz-Griffero F., Hirsch V., Bouamr F. 2015. TRIM5α-mediated ubiquitin chain conjugation is required for inhibition of HIV-1 reverse transcription and capsid destabilization. J. Virol.90 (4), 1849–1857.

    Article  PubMed  CAS  Google Scholar 

  60. Wu X., Anderson J.L., Campbell E.M., Joseph A.M., Hope T.J. 2006. Proteasome inhibitors uncouple rhesus TRIM5alpha restriction of HIV-1 reverse transcription and infection. Proc. Natl. Acad. Sci. U. S. A.103 (19), 7465–7470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang Y., Brandariz-Nuñez A., Fricke T., Ivanov D.N., Sarnak Z., Diaz-Griffero F. 2014. Binding of the rhesus TRIM5α PRYSPRY domain to capsid is necessary but not sufficient for HIV-1 restriction. Virology.448, 217–228.

    Article  CAS  PubMed  Google Scholar 

  62. Lamichhane R., Mukherjee S., Smolin N., Pauszek R.F., Bradley M., Sastri J., Robia S.L., Millar D., Campbell E.M. 2017. Dynamic conformational changes in the rhesus TRIM5α dimer dictate the potency of HIV-1 restriction. Virology.500, 161–168.

    Article  CAS  PubMed  Google Scholar 

  63. Black L.R., Aiken C. 2010. TRIM5alpha disrupts the structure of assembled HIV-1 capsid complexes in vitro.J. Virol.84 (13), 6564–6569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhao G., Ke D., Vu T., Ahn J., Shah V.B., Yang R., Aiken C., Charlton L.M., Gronenborn A.M., Zhang P. 2011. Rhesus TRIM5α disrupts the HIV-1 capsid at the inter-hexamer interfaces. PLoS Pathogens.7 (3), e1002009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Quinn C.M., Wang M., Fritz M.P., Runge B., Ahn J., Xu C., Perilla J.R., Gronenborn A.M., Polenova T. 2018. Dynamic regulation of HIV-1 capsid interaction with the restriction factor TRIM5α identified by magic-angle spinning NMR and molecular dynamics simulations. Proc. Natl. Acad. Sci. U. S. A.115 (45), 11519–11524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dick R.A., Zadrozny K.K., Xu C., Schur F., Lyddon T.D., Ricana C.L., Wagner J.M., Perilla J.R., Ganser-Pornillos B.K., Johnson M.C., Pornillos O., Vogt V.M. 2018. Inositol phosphates are assembly co-factors for HIV-1. Nature.560 (7719), 509–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mallery D.L., Márquez C.L., McEwan W.A., Dickson C.F., Jacques D.A., Anandapadamanaban M., Bichel K., Towers G.J., Saiardi A., Böcking T., James L.C. 2018. IP6 is an HIV pocket factor that prevents capsid collapse and promotes DNA synthesis. eLife.7, e35335.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ganser-Pornillos B.K., Pornillos O. 2019. Restriction of HIV-1 and other retroviruses by TRIM5. Nat. Rev. Microbiol. 17, 546–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pertel T., Hausmann S., Morger D., Züger S., Guerra J., Lascano J., Reinhard C., Santoni F.A., Uchil P.D., Chatel L., Bisiaux A., Albert M.L., Strambio-De-Castillia C., Mothes W., Pizzato M., et al. 2011. TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature.472 (7343), 361–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yudina Z., Roa A., Johnson R., Biris N., de Souza Aranha Vieira D.A., Tsiperson V., Reszka N., Taylor A.B., Hart P.J., Demeler B., Diaz-Griffero F., Ivanov D.N. 2015. RING dimerization links higher-order assembly of TRIM5α to synthesis of K63-linked polyubiquitin. Cell Repts.12 (5), 788–797.

    Article  CAS  Google Scholar 

  71. Sakuma R., Noser J.A., Ohmine S., Ikeda Y. 2007. Rhesus monkey TRIM5alpha restricts HIV-1 production through rapid degradation of viral Gag polyproteins. Nat. Med.13 (5), 631–635.

    Article  CAS  PubMed  Google Scholar 

  72. Sakuma R., Ohmine S., Ikeda Y. 2010. Determinants for the rhesus monkey TRIM5alpha-mediated block of the late phase of HIV-1 replication. J. Biol. Chem. 285 (6), 3784–3793.

    Article  CAS  PubMed  Google Scholar 

  73. Zhang F., Perez-Caballero D., Hatziioannou T., Bieniasz P.D. 2008. No effect of endogenous TRIM5alpha on HIV-1 production. Nat. Med.14 (3), 235–236.

    Article  PubMed  CAS  Google Scholar 

  74. Anderson J.S., Javien J., Nolta J.A., Bauer G. 2009. Preintegration HIV-1 inhibition by a combination lentiviral vector containing a chimeric TRIM5 alpha protein, a CCR5 shRNA, and a TAR decoy. Mol. Ther.17 (12), 2103–2114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Omelchenko D.O., Glazkova D.V., Bogoslovskaya E.V., Urusov F.A., Zhogina Yu.A., Tsyganova G.M., Shipulin G.A. 2018. Protection of lymphocytes against HIV using lentivirus vector carrying a combination of TRIM5α-HRH genes and microRNA against CCR5.Mol. Biol. (Moscow). 52 (2), 251–261.

    Article  CAS  Google Scholar 

  76. Delviks-Frankenberry K.A., Ackerman D., Timberlake N.D., Hamscher M., Nikolaitchik O.A., Hu W.S., Torbett B.E., Pathak V.K. 2019. Development of lentiviral vectors for HIV-1 gene therapy with Vif-resistant APOBEC3G. Mol. Ther. Nucleic Acids. 18, 1023–1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang X., Ao Z., Danappa Jayappa K., Shi B., Kobinger G., Yao X. 2014. R88-APOBEC3Gm inhibits the replication of both drug-resistant strains of HIV-1 and viruses produced from latently infected cells. Mol. Ther. Nucleic Acids. 3 (3), e151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shunaeva A., Potashnikova D., Pichugin A., Mishina A., Filatov A., Nikolaitchik O., Hu W.S., Mazurov D. 2015. Improvement of HIV-1 and human T cell lymphotropic virus type 1 replication-dependent vectors via optimization of reporter gene reconstitution and modification with intronic short hairpin RNA. J. Virol.89 (20), 10591–10601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The preparation of the present review didn’t require any special funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Urusov.

Ethics declarations

This article does not contain any studies involving animals or humans performed by any of the authors.

Conflict of interest. The authors declare no conflict of interest.

Additional information

Translated by E. Martynova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glazkova, D.V., Urusov, F.A., Bogoslovskaya, E.V. et al. Retrovirus Restriction Factor TRIM5α: The Mechanism of Action and Prospects for Use in Gene Therapy of HIV Infection. Mol Biol 54, 623–632 (2020). https://doi.org/10.1134/S0026893320050039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893320050039

Keywords:

Navigation