Skip to main content
Log in

CbCYP716A261, a New β-Amyrin 28-Hydroxylase Involved in Conyzasaponin Biosynthesis from Conyza blinii

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Conyzasaponins produced by the traditional Chinese herb Conyza blinii are oleanane-type saponins with a wide range of biological activities. Here, we identified a gene, designated CbCYP716A261, encoding a β-amyrin 28-hydroxylase in conyzasaponins biosynthesis. Ten full putative CYP sequences were isolated from Conyza blinii transcript tags. The CbCYP716A261 gene product was selected as the putative β-amyrin 28‑hydroxylase by phylogenetic analysis and transcriptional activity analysis of methyl jasmonate-treated Conyza blinii. To identify the enzymatic activity, we performed enzymatic activity experiments in vitro and in vivo. The HPLC results revealed that CbCYP716A261 catalyzes the hydroxylation of β-amyrin at the C-28 position to yield oleanolic acid. Our findings provide new information about the conyzasaponin biosynthesis pathway and widen the list of isolated β-amyrin 28-hydroxylases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Augustin J.M., Kuzina V., Andersen S.B., Bak S. 2011. Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry.72, 435‒457.

    Article  CAS  PubMed  Google Scholar 

  2. Osbourn A., Goss R.J., Field R.A. 2004. The saponins: polar isoprenoids with important and diverse biological activities. Nat. Prod. Rep.28, 1261‒1268.

    Article  CAS  Google Scholar 

  3. Sparg S.G., Light M.E., Staden J.V. 2004. Biological activities and distribution of plant saponins. J. Ethnopharmacol.94, 219‒243.

    Article  CAS  PubMed  Google Scholar 

  4. Salvador J.A., Moreira V.M., Goncalves B.M., Leal A.S., Jing Y. 2012. Ursane-type pentacyclic triterpenoids as useful platforms to discover anticancer drugs. Nat. Prod. Rep.29, 1463‒1479.

    Article  CAS  PubMed  Google Scholar 

  5. Wang Z.Y., Cheng Y., Wang N., Wang D.M., Li Y.W., Han F., Shen J.G., Yang D.P., Guan X.Y., Chen J.P. 2012. Dioscin induces cancer cell apoptosis through elevated oxidative stress mediated by downregulation of peroxiredoxins. Cancer Biol. Ther.13, 138‒147.

    Article  CAS  PubMed  Google Scholar 

  6. Hostettmann K.A. Marston A. 1995. Saponins: Chemistry and Pharmacology of Natural Products. Cambridge: Cambridge Univ. Press.

    Book  Google Scholar 

  7. Vogler B.K., Pittler M.H., Ernst E. 1999. The efficacy of ginseng. A systematic review of randomised clinical trials. Eur. J. Clin. Pharmacol.55, 567‒575.

    Article  CAS  PubMed  Google Scholar 

  8. Roberts S.C. 2007. Production and engineering of terpenoids in plant cell culture. Nat. Chem. Biol.3, 387‒395.

    Article  CAS  PubMed  Google Scholar 

  9. Chinese Pharmacopoeia Commission. 2010. Pharmacopoeia of the People’s Republic of China: Jinglongdancao. Beijing: People’s Medical Publishing House.

    Google Scholar 

  10. Qi Y.Q., Xu X.C., He H.W., Wang S.K., Yang C.Y. 1983. Preliminary experimental study on total saponins of Conyza blinii.Chin. Tradit. Pat Med.6, 36.

    Google Scholar 

  11. Li L.X. 1980. Comparison of Conyza blinii saponin tablets with doxycycline tablets in treating 310 cases of chronic tuberculosis. J. Chengdu Univ. Tradit. Chin. Med.6, 29‒34.

    Google Scholar 

  12. Ma L., Liu H.Y., Qin P., Hu C.X., Man S.L., Li Y.Y., Liu Z., Liu Z.X., Diao A.P. 2017. Saponin fraction isolated from Conyza blinii H.Lév. demonstrates strong anti-cancer activity that is due to its NF-κB inhibition. Biochem. Biophys. Res. Commun.483, 779‒785.

    Article  CAS  PubMed  Google Scholar 

  13. Su Y.F., Guo D.A., Guo H.Z., Liu J.S., Zheng J.H., Koike K., Nikaido T. 2001. Four new triterpenoid saponins from Conyza blinii.J. Nat. Prod.64, 32.

    Article  CAS  PubMed  Google Scholar 

  14. Su Y.F., Koike K., Guo D.A., Satou T., Liu J.S., Zheng J.H., Nikaido T. 2001. New apiose-containing triterpenoid saponins from Conyza blinii.Tetrahedron.57, 6721‒6726.

    Article  CAS  Google Scholar 

  15. Su Y.F., Koike K., Nikaido T., Liu J.S., Zheng J.H., Guo D.A. 2003. Conyzasaponins I–Q, nine new triterpenoid daponins from Conyza blinii.J. Nat. Prod.66, 1593‒1599.

    Article  CAS  PubMed  Google Scholar 

  16. Buchanan B., Gruissem R., Jones J. 2000. Biochemistry and Molecular Biology of Plants: Natural Products, Secondary Metabolites. Rockville, MD: Am. Soc. Plant Physiol.

    Google Scholar 

  17. Seki H., Ohyama K., Sawai S., Mizutani M., Ohnishi T., Sudo H., Akashi T., Aoki T., Saito K., Muranaka T. 2008. Licorice beta-amyrin 11-oxidase, a cytochrome P450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin. Proc. Natl. Acad. Sci. U. S. A.105, 14204‒14209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sudo H., Seki H., Sakurai N., Suzuki H., Shibata D., Toyoda A., Totoki Y., Sakaki Y., Iida O., Shibata T., Kojoma M., Muranaka T., Saito K. 2009. Expressed sequence tags from rhizomes of Glycyrrhiza uralensis.Plant Biotechnol.26, 105‒108.

    Article  CAS  Google Scholar 

  19. Shibuya M., Hoshino M., Katsube Y., Hayashi H., Kushiro T., Ebizuka Y. 2006. Identification of beta-amyrin and sophoradiol 24-hydroxylase by expressed sequence tag mining and functional expression assay. FEBS J.273, 948‒959.

    Article  CAS  PubMed  Google Scholar 

  20. Li L.Y., Cheng H., Gai J.Y., Yu D.Y. 2007. Genome-wide identification and characterization of putative cytochrome P450 genes in the model legume Medicago truncatula.Planta. 226, 109‒123.

    Article  CAS  PubMed  Google Scholar 

  21. Carelli M., Biazzi E., Panara F., Tava A., Scaramelli L., Porceddu A., Graham N., Odoardi M., Piano E., Arcioni S., May S., Scotti C., Calderini O. 2011. Medicago truncatula CYP716A12 is a multifunctional oxidase involved in the biosynthesis of hemolytic saponins. Plant Cell.23, 3070‒3081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Han J.Y., Hwang H.S., Choi S.W., Kim H.J., Choi Y.E. 2012. Cytochrome P450 CYP716A53v2 catalyzes the formation of protopanaxatriol from protopanaxadiol during ginsenoside biosynthesis in Panax ginseng.Plant Cell Physiol.53, 1535‒1545.

    Article  CAS  PubMed  Google Scholar 

  23. Han J.Y., Kim H.J., Kwon Y.S., Choi Y.E. 2011. The Cyt P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-II during ginsenoside biosynthesis in Panax ginseng.Plant Cell Physiol.52, 2062‒2073.

    Article  CAS  PubMed  Google Scholar 

  24. Krokida A., Delis C., Geisler K., Garagounis C., Tsikou D., Peña-Rodríguez L.M., Katsarou D., Field B., Osbourn A.E., Papadopoulou K.K. 2013. A metabolic gene cluster in Lotus japonicus discloses novel enzyme functions and products in triterpene biosynthesis. New Phytol.200, 675‒690.

    Article  CAS  PubMed  Google Scholar 

  25. Sun R., Liu S., Tang Z.Z., Zheng T.R., Wang T., Chen H., Li C.L., Wu Q. 2017. β-Amyrin synthase from Conyza blinii expressed in Saccharomyces cerevisiae.FEBS Open Bio.7, 1575‒1585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sun R., Liu S., Tang Z.Z., Jin H.J., Li C.L., Chen H. 2015. Study on transcriptome characteristic of genuine traditional Chinese medicine Conyza blinii H.Lév leaves of Sichuan. Mol. Plant Breed. 13, 2754‒2760.

    CAS  Google Scholar 

  27. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol.28, 2731–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Olsen K.M., Hehn A., Jugdé H., Slimestad R., Larbat R., Bourgaud F., Lillo C. 2010. Identification and characterisation of CYP75A31, a new flavonoid 3'-5'-hydroxylase, isolated from Solanum lycopersicum.BMC Plant Biol.10, 21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Luo H.M., Sun C., Sun Y.Z., Wu Q., Li Y., Song J.Y., Niu Y.Y., Cheng X.L., Xu H.X., Li C.Y., Liu J.Y., Steinmetz A., Chen S.L. 2011. Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers. BMC Genomics.12, S5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sui C., Zhang J., Wei J.H., Chen S.L., Li Y., Xu J.S., Jin J., Xie C.X., Gao Z.H., Chen H.J., Yang C.M., Zhang Z., Xu Y.H. 2011. Transcriptome analysis of Bupleurum chinense focusing on genes involved in the biosynthesis of saikosaponins. BMC Genomics.12, 539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rai A., Yamazaki M., Takahashi H., Nakamura M., Kojoma M., Suzuki H., Saito K. 2016. RNA-seq transcriptome analysis of Panax japonicus, and its comparison with other Panax species to identify potential genes involved in the saponins biosynthesis. Front. Plant Sci.7, 481.

    PubMed  PubMed Central  Google Scholar 

  32. Tanaka Y. Brugliera F. 2014. Fifty Years of Cytochrome P450 Research: Plant Cytochrome P450s in Triterpenoid Biosynthesis, Diversity and Application to Combinatorial Biosynthesis. Japan: Springer.

  33. Zapata L., Ding J., Willing E.M., Hartwig B., Bezdan D., Jiao W.B., Patel V., James G.V., Koornneef M., Ossowski S., Schneeberger K. 2016. Chromosome-level assembly of Arabidopsis thaliana Ler reveals the extent of translocation and inversion polymorphisms. Proc. Natl. Acad. Sci. U. S. A.113, E4052–E4060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Seki H., Sawai S., Ohyama K., Mizutani M., Ohnishi T., Sudo H., Fukushima E.O., Akashi T., Aoki T., Saito K., Muranaka T. 2011. Triterpene functional genomics in licorice for identification of CYP72A154 involved in the biosynthesis of glycyrrhizin. Plant Cell.23, 4112‒4123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moses T., Pollier J., Almagro L., Buyst D., Montagu M.V., Pedreño M.A., Martins J.C., Thevelein J.M., Goossens A. 2014. Combinatorial biosynthesis of sapogenins and saponins in Saccharomyces cerevisiae using a C-16α hydroxylase from Bupleurum falcatum.Proc. Natl. Acad. Sci. U. S. A.111, 1634‒1639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fukushima E.O., Seki H., Ohyama K., Ono E., Umemoto N., Mizutani M., Saito K., Muranaka T. 2011. CYP716A subfamily members are multifunctional oxidases in triterpenoid biosynthesis. Plant Cell Physiol.52, 2050‒2061.

    Article  CAS  PubMed  Google Scholar 

  37. Naoumkina M.A., Modolo L.V., Huhman D.V., Urbanczyk-Wochniak, E., Tang Y.H., Sumner L.W., Dixon R.A. 2010. Genomic and coexpression analyses predict multiple genes involved in triterpene saponin biosynthesis in Medicago truncatula.Plant Cell. 22, 850‒866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hayashi H., Huang P., Inoue K. 2003. Up-regulation of soyasaponin biosynthesis by methyl jasmonate in cultured cells of Glycyrrhiza glabra.Plant Cell Physiol.44, 404‒411.

    Article  CAS  PubMed  Google Scholar 

  39. Lee M.H., Jeong J.H., Seo J.W., Shin C.G., Kim Y.S., In J.G., Yang D.C., Yi J.S., Choi Y.E. 2004. Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol.45, 976‒984.

    Article  CAS  PubMed  Google Scholar 

  40. Ma L. Liu J.G. 2014. The protective activity of Conyza blinii saponin against acute gastric ulcer induced by ethanol. J. Ethnopharmacol.158, 358‒363.

    Article  CAS  PubMed  Google Scholar 

  41. Moses T., Pollier J., Faizal A., Apers S., Pieters L., Thevelein J.M., Geelen D. 2015. Unraveling the triterpenoid saponin biosynthesis of the African shrub Maesa lanceolata.Mol. Plant. 8, 122‒135.

    Article  CAS  PubMed  Google Scholar 

  42. Lu M.B., Wong H., Teng W.L. 2001. Effects of elicitation on the production of saponin in cell culture of Panax ginseng.Plant Cell Rep. 20, 674‒677.

    Article  CAS  Google Scholar 

  43. Yu K.W., Gao W.Y., Hahn E.J., Paek K.Y. 2002. Jasmonic acid improves ginsenoside accumulation in adventitious root culture of Panax ginseng C.A. Meyer. Biochem. Eng. J.11, 211‒215.

    Article  CAS  Google Scholar 

  44. Liu Y.L., Cai Y.F., Zhao Z.J., Wang J.F., Li J., Xin W., Xia G.G., Xiang F.N. 2009. Cloning and functional analysis of a β-amyrin synthase gene associated with oleanolic acid biosynthesis in Gentiana straminea MAXIM. Biol. Pharm. Bull.32, 818‒824.

    Article  CAS  PubMed  Google Scholar 

  45. Yasumoto S., Fukushima E.O., Seki H., Muranaka T. 2016. Novel triterpene oxidizing activity of Arabidopsis thaliana CYP716A subfamily enzymes. FEBS Lett.590, 533‒540.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Chen.

Ethics declarations

FUNDING

This study was supported by a grant of the Panzhihua University (035200167) and Department of Science and Technology of Sichuan Province (2018HH0074).

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving animals or human participants performed by any of the authors.

The authors declare that they have no conflict of interest.

ADDITIONAL INFORMATION

The text was submitted by the author(s) in English.

Additional information

Abbreviations: HPLC, High-performance liquid chromatography; CYP, Cytochrome P450; GT, Glycosyltransferase; MeJA, Methyl jasmonate; SC-U, Synthetic complete medium lacking uracil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, R., Gao, J.L., Chen, H. et al. CbCYP716A261, a New β-Amyrin 28-Hydroxylase Involved in Conyzasaponin Biosynthesis from Conyza blinii . Mol Biol 54, 719–729 (2020). https://doi.org/10.1134/S002689332005009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002689332005009X

Keywords:

Navigation