Skip to main content
Log in

Long Non-Coding RNAs as Competitive Endogenous RNAs in Osteosarcoma

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—

It was more than twenty years ago that miRNAs were recognized as a new class of RNA, but the understanding of their regulatory role is just beginning to emerge. Furthermore, it was found that the function of miRNAs as “master regulators” can be controlled by other non-coding RNAs (ncRNAs), in particular, long ncRNAs (lncRNAs). The regulatory functions of lncRNAs have been indicated in tumors in various locations and, in particular, in osteosarcoma, the most common and most aggressive malignant bone disease in children during puberty. This review discusses studies about the role of lncRNAs in the regulation of gene expression by the competitive endogenous RNAs (ceRNAs) mechanism. Data from these publications confirm the involvement of lncRNAs in the major signaling pathways, such as Notch, PI3K/AKT, Wnt/β-catenin, JNK, and HIV/VEGF. For example, seven members of the SNHG family (small nucleolar RNA host gene) were shown to participate in the Notch and PI3K/AKT signaling pathways; moreover, several lncRNA/miRNA/mRNA regulatory axes were identified for nearly all members of this family. The functions of other multifunctional oncogenic lncRNAs are also discussed; in particular, six to ten such axes have been determined for TUG1, MALAT1, and XIST. Using the Gene Cards, KEGG, and Panther databases, the key signaling pathways were identified for the targets of these three multifunctional lncRNAs. Investigation of lncRNA function contributes to the development of new diagnostic and prognostic markers for the treatment of patients with osteosarcoma. According to the available data, interactions between ceRNAs, that is, miRNAs, mRNAs, and lncRNAs, represent a new form of gene expression regulation that is involved in various pathophysiological processes, including bone oncogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. ENCODE Consortium. 2012. Landscape of transcription in human cells. Nature. 489 (7414), 101–108. https://doi.org/10.1038/nature11233

    Article  CAS  Google Scholar 

  2. Diederichs S., Bartsch L., Berkmann J.C., Fröse K., Heitmann J., Hoppe C., Iggena D., Jazmati D., Karschnia P., Linsenmeier M., Maulhardt T., Möhrmann L., Morstein J., Paffenholz S.V., Röpenack P., et al. EMBO Mol. Med.8 (5), 442–457. https://doi.org/10.15252/emmm.201506055

  3. Yang D., Sun L., Li Z., Gao P. 2016. Noncoding RNAs in regulation of cancer metabolic reprogramming. Adv. Exp. Med. Biol.927, 191–215. https://doi.org/10.1007/978-981-10-1498-7_7

    Article  CAS  PubMed  Google Scholar 

  4. Baek D., Villén J., Shin C., Camargo F.D., Gygi S.P., Bartel D.P. 2008. The impact of microRNAs on protein output. Nature. 455 (7209), 64–71. https://doi.org/10.1038/nature07242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. ENCODE Consortium. 2012. Architecture of the human regulatory network derived from ENCODE data. Nature. 489 (7414), 91–100. https://doi.org/10.1038/nature11245

    Article  CAS  Google Scholar 

  6. Chan S.H., Wang L.H. 2015. Regulation of cancer metastasis by microRNAs. J. Biomed. Sci.22, 9. https://doi.org/10.1186/s12929-015-0113-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Loginov V.I., Rykov S.V., Fridman M.V., Braga E.A. 2015. Methylation of miRNA genes and oncogenesis. Biochemistry (Moscow). 80 (2), 145–162.

    CAS  PubMed  Google Scholar 

  8. Sanchez Calle A., Kawamura Y., Yamamoto Y., Takeshita F., Ochiya T. 2018. Emerging roles of long non-coding RNA in cancer. Cancer Sci.109 (7), 2093–2100. https://doi.org/10.1111/cas.13642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Leygue E. 2007. Steroid receptor RNA activator (SRA1): Unusual bifaceted gene products with suspected relevance to breast cancer. Nucl. Recept. Signal.5, e006. https://doi.org/10.1621/nrs.05006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Quinn J.J., Chang H.Y. 2016. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet.17 (1), 47–62. https://doi.org/10.1038/nrg.2015.10

    Article  CAS  PubMed  Google Scholar 

  11. Bure I.V., Kuznetsova E.B., Zaletaev D.V. 2018. Long noncoding RNAs and their role in oncogenesis. Mol. Biol. (Moscow). 52 (6), 787–798.

    Article  CAS  Google Scholar 

  12. Salmena L., Poliseno L., Tay Y., Kats L., Pandolfi P.P. 2011. A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell.146 (3), 353–358. https://doi.org/10.1016/j.cell.2011.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tian J., Wang Y., Zhang X., Ren Q., Li R., Huang Y., Lu H., Chen J. 2017. Calycosin inhibits the in vitro and in vivo growth of breast cancer cells through WDR7-7-GPR30 signaling. J. Exp. Clin. Cancer Res.36 (1), 153. https://doi.org/10.1186/s13046-017-0625-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bhan A., Soleimani M., Mandal S.S. 2017. Long noncoding RNA and cancer: A new paradigm. Cancer Res. 77 (15), 3965–3981. https://doi.org/10.1158/0008-5472.CAN-16-2634

    Article  CAS  PubMed  Google Scholar 

  15. Patop I.L., Kadener S. 2018. circRNAs in cancer. Curr. Opin. Genet. Dev.48, 121–127. https://doi.org/10.1016/j.gde.2017.11.007

    Article  CAS  PubMed  Google Scholar 

  16. Chan J.J., Tay Y. 2018. Noncoding RNA: RNA regulatory networks in cancer. Int. J. Mol. Sci.19 (5), E1310. https://doi.org/10.3390/ijms19051310

    Article  CAS  PubMed  Google Scholar 

  17. Friebele J.C., Peck J., Pan X., Abdel-Rasoul M., Mayerson J.L. 2015. Osteosarcoma: A meta-analysis and review of the literature. Am. J. Orthop. (Belle Mead, NJ). 44 (12), 547–553.

    Google Scholar 

  18. Bahl A., George P., Bhattacharyya T., Ghoshal S., Bakshi J., Das A.J. 2015. Osteosarcoma of larynx: A rare case report with review of literature. Cancer Res. Ther.11 (4), 1038. https://doi.org/10.4103/0973-1482.139274

    Article  CAS  Google Scholar 

  19. Siegel R.L., Miller K.D., Jemal A. 2016. Cancer statistics, 2016. CA Cancer J. Clin.66 (1), 7–30. https://doi.org/10.3322/caac.21332

    Article  PubMed  Google Scholar 

  20. Kushlinskii N.E., Fridman M.V., Braga E.A. 2016. Molecular mechanisms and microRNAs in osteosarcoma pathogenesis. Biochemistry (Moscow). 81 (4), 315–328. https://doi.org/10.1134/S0006297916040027

    Article  CAS  PubMed  Google Scholar 

  21. He X., Gao Z., Xu H., Zhang Z., Fu P. 2017. A meta-analysis of randomized control trials of surgical methods with osteosarcoma outcomes. J. Orthop. Surg. Res.12 (1), 5. https://doi.org/10.1186/s13018-016-0500-0

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhu L., McManus M.M., Hughes D.P. 2013. Understanding the biology of bone sarcoma from early initiating events through late events in metastasis and disease progression. Front. Oncol.3, 230. https://doi.org/10.3389/fonc.2013.00230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin Y.H., Jewell B.E., Gingold J., Lu L., Zhao R., Wang L.L., Lee D.F. 2017. Osteosarcoma: Molecular pathogenesis and iPSC modeling. Trends Mol. Med.23, 737–755. https://doi.org/10.1016/j.molmed.2017.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Palmini G., Marini F., Brandi M.L. 2017. What is new in the miRNA world regarding osteosarcoma and chondrosarcoma? Molecules.22 (3), 417. https://doi.org/10.3390/molecules22030417

    Article  CAS  PubMed Central  Google Scholar 

  25. Pan Y., Lu L., Chen J., Zhong Y., Dai Z. 2018. Identification of potential crucial genes and construction of microRNA-mRNA negative regulatory networks in osteosarcoma. Hereditas.155, 21. https://doi.org/10.1186/s41065-018-0061-9

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu Q., Wang Z., Zhou X., Tang M., Tan W., Sun T., Deng Y. 2019. miR-342-5p inhibits osteosarcoma cell growth, migration, invasion, and sensitivity to doxorubicin through targeting Wnt7b. Cell Cycle.18 (23), 3325–3336. https://doi.org/10.1080/15384101.2019.1676087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang J., Liu S., Shi J, Li J., Wang S., Liu H., Zhao S., Duan K., Pan X., Yi Z. 2019. The role of miRNA in the diagnosis, prognosis, and treatment of osteosarcoma. Cancer Biother. Radiopharm.34 (10), 605–613. https://doi.org/10.1089/cbr.2019.2939

    Article  CAS  PubMed  Google Scholar 

  28. Sasaki R., Osaki M., Okada F. 2019. MicroRNA-based diagnosis and treatment of metastatic human osteosarcoma. Cancers (Basel). 11 (4), 553. https://doi.org/10.3390/cancers11040553

    Article  CAS  PubMed Central  Google Scholar 

  29. Viera G.M., Salomao K.B., de Sousa G.R., Baroni M., Delsin L.E.A., Pezuk J.A., Brassesco M.S. 2019. miRNA signatures in childhood sarcomas and their clinical implications. Clin. Transl. Oncol.21 (12), 1583–1623. https://doi.org/10.1007/s12094-019-02104-z

    Article  CAS  PubMed  Google Scholar 

  30. Li Z., Yu X., Shen J. 2016. Long non-coding RNAs: Emerging players in osteosarcoma. Tumour Biol.37 (3), 2811–2816. https://doi.org/10.1007/s13277-015-4749-4

    Article  CAS  PubMed  Google Scholar 

  31. Chen R., Wang G., Zheng Y., Hua Y., Cai Z. 2017. Long non-coding RNAs in osteosarcoma. Oncotarget.8 (12), 20462–20475. https://doi.org/10.18632/oncotarget.14726

    Article  PubMed  PubMed Central  Google Scholar 

  32. Smolle M.A., Pichler M. 2018. The role of long non-coding RNAs in osteosarcoma. Noncoding RNA.4 (1), 7. https://doi.org/10.3390/ncrna4010007

    Article  CAS  PubMed Central  Google Scholar 

  33. Wang J.Y., Yang Y., Ma Y., Wang F., Xue A., Zhu J., Yang H., Chen Q., Chen M., Ye L., Wu H., Zhang Q. 2020. Potential regulatory role of lncRNA-miRNA-mRNA axis in osteosarcoma. Biomed. Pharmacother.121, 109627. https://doi.org/10.1016/j.biopha.2019.109627

    Article  CAS  PubMed  Google Scholar 

  34. Yang Z., Li X., Yang Y., He Z., Qu X., Zhang Y. 2016. Long noncoding RNAs in the progression, metastasis, and prognosis of osteosarcoma. Cell Death Dis.7 (9), 2389. https://doi.org/10.1038/cddis.2016.272

    Article  CAS  Google Scholar 

  35. Li Z., Dou P., Liu T., He S. 2017. Application of long noncoding RNAs in osteosarcoma: Biomarkers and therapeutic targets. Cell Physiol. Biochem.42 (4), 1407–1419. https://doi.org/10.1159/000479205

    Article  CAS  PubMed  Google Scholar 

  36. Wang C., Jing J., Cheng L. 2018. Emerging roles of non-coding RNAs in the pathogenesis, diagnosis and prognosis of osteosarcoma. Invest. New Drugs.36 (6), 1116–1132. https://doi.org/10.1007/s10637-018-0624-7

    Article  CAS  PubMed  Google Scholar 

  37. Guo W., Yu Q., Zhang M., Li F., Liu Y., Jiang W., Jiang H., Li H. 2019. Long intergenic non-protein coding RNA 511 promotes the progression of osteosarcoma cells through sponging microRNA 618 to upregulate the expression of maelstrom. Aging (Albany, NY). 11 (15), 5351–5367. https://doi.org/10.18632/aging.102109

    Article  CAS  Google Scholar 

  38. McManus M.M., Weiss K.R., Hughes D.P. 2014. Understanding the role of Notch in osteosarcoma. Adv. Exp. Med. Biol.804, 67–92. https://doi.org/10.1007/978-3-319-04843-7_4

    Article  CAS  PubMed  Google Scholar 

  39. Wang Y.M., Wang W., Qiu E.D. 2017. Osteosarcoma cells induce differentiation of mesenchymal stem cells into cancer associated fibroblasts through Notch and Akt signaling pathway. Int. J. Clin. Exp. Pathol.10 (8), 8479–8486.

    PubMed  PubMed Central  Google Scholar 

  40. Yu L., Xia K., Gao T., Chen J., Zhang Z., Sun X., Simões B.M., Eyre R., Fan Z., Guo W., Clarke R.B. 2019. The Notch pathway promotes osteosarcoma progression through activation of ephrin reverse signaling. Mol. Cancer Res.17 (12), 2383–2394. https://doi.org/10.1158/1541-7786

    Article  CAS  PubMed  Google Scholar 

  41. Danieau G., Morice S., Rédini F., Verrecchia F., Royer B.B. 2019. New insights about the Wnt/β-catenin signaling pathway in primary bone tumors and their microenvironment: A promising target to develop therapeutic strategies? Int. J. Mol. Sci.20 (15), 3751. https://doi.org/10.3390/ijms20153751

    Article  CAS  PubMed Central  Google Scholar 

  42. Guan H., Tan P., Xie L., Mi B., Fang Z., Li J., Yue J., Liao H., Li F. 2015. FOXO1 inhibits osteosarcoma oncogenesis via Wnt/β-catenin pathway suppression. Oncogenesis.4, 166. https://doi.org/10.1038/oncsis.2015.25

    Article  CAS  Google Scholar 

  43. Kanehisa M., Sato Y., Furumichi M., Morishima K., Tanabe M. 2019. New approach for understanding genome variations in KEGG. Nucleic Acids Res.47 (D1), 590–595. https://doi.org/10.1093/nar/gky962

    Article  CAS  Google Scholar 

  44. Yang J., Li Y.H., He M.T., Qiao J.F., Sang Y., Ch-eang L.H., Gomes F.C., Hu Y., Li Z.Y., Liu N., Zhang H.T., Zha Z.G. 2020. HSP90 regulates osteosarcoma cell apoptosis by targeting the p53/TCF-1-mediated transcriptional network. J. Cell Physiol.235 (4), 3894–3904. https://doi.org/10.1002/jcp.29283

    Article  CAS  PubMed  Google Scholar 

  45. Velletri T., Xie N., Wang Y., Huang Y., Yang Q., Chen X., Chen Q., Shou P., Gan Y., Cao G., Melino G., Shi Y. 2016. P53 functional abnormality in mesenchymal stem cells promotes osteosarcoma development. Cell Death Dis.7, 2015. https://doi.org/10.1038/cddis.2015.367

    Article  Google Scholar 

  46. Han Y., Kim Y.M., Kim H.S., Lee K.Y. 2017. Melatonin promotes osteoblast differentiation by regulating Osterix protein stability and expression. Sci. Rep.7, 5716. https://doi.org/10.1038/s41598-017-06304-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Komori T. 2018. Runx2, an inducer of osteoblast and chondrocyte differentiation. Histochem. Cell Biol.149, 313–323. https://doi.org/10.1007/s00418-018-1640-6

    Article  CAS  PubMed  Google Scholar 

  48. Zhou W., Hao M., Du X., Chen K., Wang G., Yang J. 2014. Advances in targeted therapy for osteosarcoma. Discov. Med.17 (96), 301–307.

    PubMed  Google Scholar 

  49. Li Y.S., Deng Z.H., Zeng C., Lei G.H. 2016. JNK pathway in osteosarcoma: Pathogenesis and therapeutics. J. Recept. Signal Transduct. Res.36 (5), 465–470. https://doi.org/10.3109/10799893.2015.1122045

    Article  CAS  PubMed  Google Scholar 

  50. Yu G.H., Li A.M., Li X., Yang Z., Peng H. 2017. Bispecific antibody suppresses osteosarcoma aggressiveness through regulation of NF-κB signaling pathway. Tumour Biol.39 (6), 1010428317705572. https://doi.org/10.1177/1010428317705572

    Article  CAS  PubMed  Google Scholar 

  51. de Azevedo J.W.V., de Medeiros Fernandes T.A.A., Fernandes J.V. Jr., de Azevedo J.C.V., Lanza D.C.F., Bezerra C.M., Andrade V.S., de Araújo J.M.G., Fernandes J.V. 2020. Biology and pathogenesis of human osteosarcoma. Oncol. Lett.19 (2), 1099–1116. https://doi.org/10.3892/ol.2019.11229

    Article  CAS  PubMed  Google Scholar 

  52. Si Z., Hu K. 2020. Identification of osteosarcoma driver genes using a network method. Oncol. Lett.19 (2), 1215–1222. https://doi.org/10.3892/ol.2019.11212

    Article  CAS  PubMed  Google Scholar 

  53. Pan B.L., Wu L., Pan L., Yang Y.X., Li H.H., Dai Y.J., He Z.Q., Tan L., Huang Y.G., Tong Z.W., Liao J.L. 2018. Up-regulation of microRNA-340 promotes osteosarcoma cell apoptosis while suppressing proliferation, migration, and invasion by inactivating the CTNNB1-mediated Notch signaling pathway. Biosci. Rep.38 (4), BSR20171615. https://doi.org/10.1042/BSR20171615

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zhou S., Yu L., Xiong M., Dai G. 2018. LncRNA SNHG12 promotes tumorigenesis and metastasis in osteosarcoma by upregulating Notch2 by sponging miR-195-5p. Biochem. Biophys. Res. Commun.495 (2), 1822–1832. https://doi.org/10.1016/j.bbrc.2017.12.047

    Article  CAS  PubMed  Google Scholar 

  55. Deng Y., Zhao F., Zhang Z., Sun F., Wang M. 2018. Long noncoding RNA SNHG7 promotes the tumor growth and epithelial-to-mesenchymal transition via regulation of miR-34a signals in osteosarcoma. Cancer Biother. Radiopharm.33 (9), 365–372. https://doi.org/10.1089/cbr.2018.2503

    Article  CAS  PubMed  Google Scholar 

  56. Mayer I.A., Arteaga C.L. 2016. The PI3K/AKT pathway as a target for cancer treatment. Annu. Rev. Med.67, 11–28. https://doi.org/10.1146/annurev-med-062913-051343

    Article  CAS  PubMed  Google Scholar 

  57. Méndez-Pertuz M., Martínez P., Blanco-Aparicio C., Gómez-Casero E., Belen García A., Martínez-Torrecuadrada J., Palafox M., Cortés J., Serra V., Pastor J., Blasco M.A. 2017. Modulation of telomere protection by the PI3K/AKT pathway. Nat. Commun.8 (1), 1278. https://doi.org/10.1038/s41467-017-01329-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang Y., Dai Q., Zeng F., Liu H. 2018. MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the Rac1/JNK pathway via targeting miR-509. Oncol. Res. https://doi.org/10.3727/096504017X14957939026111

  59. Li C., Wang F., Wei B., Wang L., Kong D. 2019. LncRNA AWPPH promotes osteosarcoma progression via activation of Wnt/beta-catenin pathway through modulating miR-93-3p/FZD7 axis. Biochem. Biophys. Res. Commun.514 (3), 1017–1022. https://doi.org/10.1016/j.bbrc.2019.04.203

    Article  CAS  PubMed  Google Scholar 

  60. Zhao J., Cheng L. 2017. Long non-coding RNA CCAT1/miR-148a axis promotes osteosarcoma proliferation and migration through regulating PIK3IP1. Acta Biochim. Biophys. Sin. (Shanghai). 49 (6), 503–512. https://doi.org/10.1093/abbs/gmx041

    Article  CAS  PubMed  Google Scholar 

  61. Jiang N., Wang X., Xie X., Liao Y., Liu N., Liu J., Miao N., Shen J., Peng T. 2017. lncRNA DANCR promotes tumor progression and cancer stemness features in osteosarcoma by upregulating AXL via miR-33a-5p inhibition. J. Cell. Biochem.405, 46–55. https://doi.org/10.1016/j.canlet.2017.06.009

    Article  CAS  Google Scholar 

  62. Kong D., Wang Y. 2018. Knockdown of lncRNA HULC inhibits proliferation, migration, invasion, and promotes apoptosis by sponging miR-122 in osteosarcoma. J. Cell. Biochem.119 (1), 1050–1061. https://doi.org/10.1002/jcb.26273

    Article  CAS  PubMed  Google Scholar 

  63. Kumar A., Singh U. K., Kini S.G., Garg V., Agrawal S., Tomar P.K., Pathak P., Chaudhary A., Gupta P., Malik A. 2015. JNK pathway signaling: A novel and smarter therapeutic targets for various biological diseases. Future Med. Chem.7 (15), 2065–2086. https://doi.org/10.4155/fmc.15.132

    Article  CAS  PubMed  Google Scholar 

  64. Lin C.H., Ji T., Chen C.F., Hoang B.H. 2014. Wnt signaling in osteosarcoma. Adv. Exp. Med. Biol.804, 33–45. https://doi.org/10.1007/978-3-319-04843-7_2

    Article  CAS  PubMed  Google Scholar 

  65. Xia B., Wang L., Feng L., Tian B., Tan Y., Du B. 2018. Knockdown of long non-coding RNA CAT104 inhibits the proliferation, migration and invasion of human osteosarcoma cells by regulating microRNA381. Oncol. Res.27 (1), 89–98. https://doi.org/10.3727/096504018X15199511344806

    Article  PubMed  Google Scholar 

  66. Wang Y., Kong D. 2018. Knockdown of lncRNA MEG3 inhibits viability, migration, and invasion and promotes apoptosis by sponging miR-127 in osteosarcoma cell. J. Cell. Biochem.119 (1), 669–679. https://doi.org/10.1002/jcb.26230

    Article  CAS  PubMed  Google Scholar 

  67. Han F., Wang C., Wang Y., Zhang L. 2017. Long noncoding RNA ATB promotes osteosarcoma cell proliferation, migration and invasion by suppressing miR-200s. Am. J. Cancer Res.7 (4), 770–783.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Jia D., Niu Y., Li D., Liu Z. 2018. lncRNA C2dat1 promotes cell proliferation, migration, and invasion by targeting miR-34a-5p in osteosarcoma cells. Oncol. Res.26 (5), 753–764. https://doi.org/10.3727/096504017X15024946480113

    Article  PubMed  Google Scholar 

  69. Jiang Z., Jiang C., Fang J. 2018. Up-regulated lnc-SNHG1 contributes to osteosarcoma progression through sequestration of miR-577 and activation of WNT2B/ Wnt/β-catenin pathway. Biochem. Biophys. Res. Commun.495 (1), 238–245. https://doi.org/10.1016/j.bbrc.2017.11.012

    Article  CAS  PubMed  Google Scholar 

  70. Wang J., Cao L., Wu J., Wang Q. 2018. Long non-coding RNA SNHG1 regulates NOB1 expression by sponging miR-326 and promotes tumorigenesis in osteosarcoma. Int. J. Oncol.52 (1), 77–88. https://doi.org/10.3892/ijo.2017.4187

    Article  CAS  PubMed  Google Scholar 

  71. Deng R., Zhang J., Chen J. 2019. lncRNA SNHG1 negatively regulates miRNA‑101‑3p to enhance the expression of ROCK1 and promote cell proliferation, migration and invasion in osteosarcoma. Int. J. Mol. Med.43 (3), 1157–1166. https://doi.org/10.3892/ijmm.2018.4039

    Article  CAS  PubMed  Google Scholar 

  72. Zheng S., Jiang F., Ge D., Tang J., Chen H., Yang J., Yao Y., Yan J., Qiu J., Yin Z., Ni Y., Zhao L., Chen X., Li H., Yang L. 2019. LncRNA SNHG3/miRNA-151a-3p/RAB22A axis regulates invasion and migration of osteosarcoma. Biomed. Pharmacother.112, 108695. https://doi.org/10.1016/j.biopha.2019.108695

    Article  CAS  PubMed  Google Scholar 

  73. Chen J., Wu Z., Zhang Y. 2019. LncRNA SNHG3 promotes cell growth by sponging miR-196a-5p and indicates the poor survival in osteosarcoma. Int. J. Immunopathol. Pharmacol.33, 2058738418820743. https://doi.org/10.1177/2058738418820743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ju C., Zhou R., Sun J., Zhang F., Tang X., Chen K.K., Zhao J., Lan X., Lin S., Zhang Z., Lv X.B. 2018. lncR-NA SNHG5 promotes the progression of osteosarcoma by sponging the miR-212-3p/SGK3 axis. Cancer Cell Int.18, 141. https://doi.org/10.1186/s12935-018-0641-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang Z., Wang Z., Liu J., Yang H. 2018. Long non-coding RNA SNHG5 sponges miR-26a to promote the tumorigenesis of osteosarcoma by targeting ROCK1. Biomed. Pharmacother.107, 598–605. https://doi.org/10.1016/j.biopha.2018.08.025

    Article  CAS  PubMed  Google Scholar 

  76. Xu N., Xu J., Zuo Z., Liu Y., Yan F., Han C. 2020. Downregulation of lncRNA SNHG12 reversed IGF1R-induced osteosarcoma metastasis and proliferation by targeting miR-195-5p. Gene. 726, 144145. https://doi.org/10.1016/j.gene.2019.144145

    Article  CAS  PubMed  Google Scholar 

  77. Zhu C., Cheng D., Qiu X., Zhuang M., Liu Z. 2018. Long noncoding RNA SNHG16 promotes cell proliferation by sponging MicroRNA-205 and upregulating ZEB1 expression in osteosarcoma. Cell Physiol. Biochem.51 (1), 429–440. https://doi.org/10.1159/000495239

    Article  CAS  PubMed  Google Scholar 

  78. Wang X., Hu K., Chao Y., Wang L. 2019. LncRNA SNHG16 promotes proliferation, migration and invasion of osteosarcoma cells by targeting miR-1301/BCL9 axis. Biomed. Pharmacother.114, 108798. https://doi.org/10.1016/j.biopha.2019.108798

    Article  CAS  PubMed  Google Scholar 

  79. Wang W., Luo P., Guo W., Shi Y., Xu D., Zheng H., Jia L. 2018. LncRNA SNHG20 knockdown suppresses the osteosarcoma tumorigenesis through the mitochondrial poptosis pathway by miR-139/RUNX2 axis. Biochem. Biophys. Res. Commun.503 (3), 1927–1933. https://doi.org/10.1016/j.bbrc.2018.07.137

    Article  CAS  PubMed  Google Scholar 

  80. Zhou Q., Chen F., Zhao J., Li B., Liang Y., Pan W., Zhang S., Wang X., Zheng D. 2016. Long non-coding RNA PVT1 promotes osteosarcoma development by acting as a molecular sponge to regulate miR-195. Oncotarget.7 (50), 82620–82633. https://doi.org/10.18632/oncotarget.13012

    Article  PubMed  PubMed Central  Google Scholar 

  81. Song J., Wu X., Liu F., Li M., Sun Y., Wang Y., Wang C., Zhu K., Jia X., Wang B., Ma X. 2017. Long non-coding RNA PVT1 promotes glycolysis and tumor progression by regulating miR-497/HK2 axis in osteosarcoma. Biochem. Biophys. Res. Commun.490 (2), 217–224. https://doi.org/10.1016/j.bbrc.2017.06.024

    Article  CAS  PubMed  Google Scholar 

  82. Zhao W., Qin P., Zhang D., Cui X., Gao J., Yu Z., Chai Y., Wang J., Li J. 2019. Long non-coding RNA PVT1 encapsulated in bone marrow mesenchymal stem cell-derived exosomes promotes osteosarcoma growth and metastasis by stabilizing ERG and sponging miR-183-5p. Aging (Albany, NY). 11 (21), 9581–9596. https://doi.org/10.18632/aging.102406

    Article  CAS  Google Scholar 

  83. Xie C.H., Cao Y.M., Huang Y., Shi Q.W., Guo J.H., Fan Z.W., Li J.G., Chen B.W., Wu B.Y. 2016. Long non-coding RNA TUG1 contributes to tumorigenesis of human osteosarcoma by sponging miR-9-5p and regulating POU2F1 expression. Tumour Biol.37 (11), 15031–15041. https://doi.org/10.1007/s13277-016-5391-5

    Article  CAS  PubMed  Google Scholar 

  84. Cao J., Han X., Qi X., Jin X., Li X. 2017. TUG1 promotes osteosarcoma tumorigenesis by upregulating EZH2 expression via miR-144-3p. Int. J. Oncol.51 (4), 1115–1123. https://doi.org/10.3892/ijo.2017.4110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang Y., Yang T., Zhang Z., Lu M., Zhao W., Zeng X., Zhang W. 2017. Long non-coding RNA TUG1 promotes migration and invasion by acting as a ceRNA of miR-335-5p in osteosarcoma cells. Cancer Sci.108 (5), 859–867. https://doi.org/10.1111/cas.13201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li G., Liu K., Du X. 2018. Long non-coding RNA TUG1 promotes proliferation and inhibits apoptosis of osteosarcoma cells by sponging miR-132-3p and upregulating SOX4 expression. Yonsei Med. J.59 (2), 226–235. https://doi.org/10.3349/ymj.2018.59.2.226

    Article  CAS  PubMed  Google Scholar 

  87. Xie C., Chen B., Wu B., Guo J., Cao Y. 2018. LncRNA TUG1 promotes cell proliferation and suppresses apoptosis in osteosarcoma by regulating miR-212-3p/FOXA1 axis. Biomed. Pharmacother.97, 1645–1653. https://doi.org/10.1016/j.biopha.2017.12.004

    Article  CAS  PubMed  Google Scholar 

  88. Yu X., Hu L., Li S., Shen J., Wang D., Xu R., Yang H. 2019. Long non-coding RNA Taurine upregulated gene 1 promotes osteosarcoma cell metastasis by mediating HIF-1α via miR-143-5p. Cell Death Dis.10 (4), 280. https://doi.org/10.1038/s41419-019-1509-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yang G., Zhang C., Wang N., Chen J. 2019. miR-425-5p decreases LncRNA MALAT1 and TUG1 expressions and suppresses tumorigenesis inosteosarcoma via Wnt/β-catenin signaling pathway. Int. J. Biochem. Cell Biol.111, 42–51. https://doi.org/10.1016/j.biocel.2019.04.004

    Article  CAS  PubMed  Google Scholar 

  90. Zhao Z.Y., Zhao Y.C., Liu W. 2019. Long non-coding RNA TUG1 regulates the progression and metastasis of osteosarcoma cells via miR-140-5p/PFN2 axis. Eur. Rev. Med. Pharmacol. Sci.23 (22), 9781–9792. https://doi.org/10.26355/eurrev_201911_19541

    Article  PubMed  Google Scholar 

  91. Sheng K., Li Y. 2019. LncRNA TUG1 promotes the development of osteosarcoma through RUNX2. Exp. Ther. Med.18 (4), 3002–3008. https://doi.org/10.3892/etm.2019.7880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hu Y., Yang Q., Wang L., Wang S., Sun F., Xu D., Jiang J. 2018. Knockdown of the oncogene lncRNA NEAT1 restores the availability of miR-34c and improves the sensitivity to cisplatin in osteosarcoma. Biosci. Rep.38 (3), BSR20180375. https://doi.org/10.1042/BSR20180375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang L., Lu X.Q., Zhou X.Q., Liu Q.B., Chen L., Cai F. 2019. NEAT1 induces osteosarcoma development by modulating the miR-339-5p/TGF-β1 pathway. J. Cell Physiol.234 (4), 5097–5105. https://doi.org/10.1002/jcp.27313

    Article  CAS  PubMed  Google Scholar 

  94. Guan H., Shang G., Cui Y., Liu J., Sun X., Cao W., Wang Y., Li Y. 2019. Long noncoding RNA APTR contributes to osteosarcoma progression through repression of miR-132-3p and upregulation of yes-associated protein 1. J. Cell Physiol.234 (6), 8998–9007. https://doi.org/10.1002/jcp.27572

    Article  CAS  PubMed  Google Scholar 

  95. Gu Z., Hou Z., Zheng L., Wang X., Wu L., Zhang C. 2018. LncRNA DICER1-AS1 promotes the proliferation, invasion and autophagy of osteosarcoma cells via miR-30b/ATG5. Biomed. Pharmacother.104, 110–118. https://doi.org/10.1016/j.biopha.2018.04.193

    Article  CAS  PubMed  Google Scholar 

  96. Gu Z., Hou Z., Zheng L., Wang X., Wu L., Zhang C. 2018. Long noncoding RNA LINC00858 promotes osteosarcoma through regulating miR-139-CDK14 axis. Biochem. Biophys. Res. Commun.503 (2), 1134–1140. https://doi.org/10.1016/j.bbrc.2018.06.131

    Article  CAS  PubMed  Google Scholar 

  97. Cui M., Wang J., Li Q., Zhang J., Jia J., Zhan X. 2017. Long non-coding RNA HOXA11-AS functions as a competing endogenous RNA to regulate ROCK1 expression by sponging miR-124-3p in osteosarcoma. Biomed. Pharmacother.92, 437–444. https://doi.org/10.1016/j.biopha.2017.05.081

    Article  CAS  PubMed  Google Scholar 

  98. Cao K., Fang Y., Wang H., Jiang Z., Guo L., Hu Y. 2019. The lncRNA HOXA11-AS regulates Rab3D expression by sponging miR-125a-5p promoting metastasis of osteosarcoma. Cancer Manag. Res.11, 4505–4518. https://doi.org/10.2147/CMAR.S196025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhou C., Xu J., Lin J., Lin R., Chen K., Kong J., Shui X. 2018. Long non-coding RNA FEZF1-AS1 promotes osteosarcoma progression by regulating miR-4443/NUPR1 axis. Oncol. Res. https://doi.org/10.3727/096504018X15188367859402

  100. Yang G., Song R., Wang L., Wu X. 2018. Knockdown of long non-coding RNA TP73-AS1 inhibits osteosarcoma cell proliferation and invasion through sponging miR-142. Biomed. Pharmacother.103, 1238–1245. https://doi.org/10.1016/j.biopha.2018.04.146

    Article  CAS  PubMed  Google Scholar 

  101. Zhu K.P., Ma X.L., Zhang C.L. 2017. LncRNA ODRUL contributes to osteosarcoma progression through the miR-3182/MMP2 axis. Mol. Ther.25 (10), 2383–2393. https://doi.org/10.1016/j.ymthe.2017.06.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Li Q., Xing W., Gong X., Wang Y. 2018. Long non-coding RNA urothelial carcinoma associated 1 promotes proliferation, migration and invasion of osteosarcoma cells by regulating microRNA-182. Cell Physiol. Biochem.51 (3), 1149–1163. https://doi.org/10.1159/000495493

    Article  CAS  PubMed  Google Scholar 

  103. Dai J., Xu L., Hu X., Han G., Jiang H., Sun H., Zhu G., Tang X. 2018. Long noncoding RNA OIP5-AS1 accelerates CDK14 expression to promote osteosarcoma tumorigenesis via targeting miR-223. Biomed. Pharmacother.106, 1441–1447. https://doi.org/10.1016/j.biopha.2018.07.109

    Article  CAS  PubMed  Google Scholar 

  104. Kun-Peng Z., Chun-Lin Z., Xiao-Long M., Lei Z. 2019. Fibronectin-1 modulated by the long noncoding RNA OIP5-AS1/miR-200b-3p axis contributes to doxorubicin resistance of osteosarcoma cells. J. Cell Physiol.234 (5), 6927–6939. https://doi.org/10.1002/jcp.27435

    Article  CAS  PubMed  Google Scholar 

  105. Lv G.Y., Miao J., Zhang X.L. 2017. Long non-coding RNA XIST promotes osteosarcoma progression by targeting ras-related protein RAP2B via miR-320b. Oncol. Res.26 (6), 837–846. https://doi.org/10.3727/096504017X14920318811721

    Article  PubMed  Google Scholar 

  106. Wu D., Nie X., Ma C., Liu X., Liang X., An Y., Zhao B., Wu X. 2017. RSF1 functions as an oncogene in osteosarcoma and is regulated by XIST/miR-193a-3p axis. Biomed. Pharmacother.95, 207–214. https://doi.org/10.1016/j.biopha.2017.08.068

    Article  CAS  PubMed  Google Scholar 

  107. Yang C., Wu K., Wang S., Wei G. 2018. Long non-coding RNA XIST promotes osteosarcoma progression by targeting YAP via miR-195-5p. J. Cell Biochem.119 (7), 5646–5656. https://doi.org/10.1002/jcb.26743

    Article  CAS  PubMed  Google Scholar 

  108. Sun X., Wei B., Peng Z.H., Fu Q.L., Wang C.J., Zheng J.C., Sun J.C. 2019. Knockdown of lncRNA XIST suppresses osteosarcoma progression by inactivating AKT/mTOR signaling pathway by sponging miR-375-3p. Int. J. Clin. Exp. Pathol.12 (5), 1507–1517.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Li H., Cui J., Xu B., He S., Yang H., Liu L. 2019. Long non-coding RNA XIST serves an oncogenic role in osteosarcoma by sponging miR-137. Exp. Ther. Med.17 (1), 730–738. https://doi.org/10.3892/etm.2018.7032

    Article  CAS  PubMed  Google Scholar 

  110. Zhang R., Xia T. 2017. Long non-coding RNA XIST regulates PDCD4 expression by interacting with miR-21-5p and inhibits osteosarcoma cell growth and metastasis. Int. J. Oncol.51 (5), 1460–1470. https://doi.org/10.3892/ijo.2017.4127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Li Q., Pan X., Wang X., Jiao X., Zheng J., Li Z., Huo Y. 2017. Long noncoding RNA MALAT1 promotes cell proliferation through suppressing miR-205 and promoting SMAD4 expression in osteosarcoma. Oncotarget.8 (63), 106648–106660. https://doi.org/10.18632/oncotarget.20678

    Article  PubMed  PubMed Central  Google Scholar 

  112. Wang Y., Zhang Y., Yang T., Zhao W., Wang N., Li P., Zeng X., Zhang W. 2017. Long non-coding RNA MALAT1 for promoting metastasis and proliferation by acting as a ceRNA of miR-144-3p in osteosarcoma cells. Oncotarget.8 (35), 59417–59434. https://doi.org/10.18632/oncotarget.19727

    Article  PubMed  PubMed Central  Google Scholar 

  113. Liu K., Huang J., Ni J., Song D., Ding M., Wang J., Huang X., Li W. 2017. MALAT1 promotes osteosarcoma development by regulation of HMGB1 via miR-142-3p and miR-129-5p. Cell Cycle.16 (6), 578–587. https://doi.org/10.1080/15384101.2017.1288324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ren D., Zheng H., Fei S., Zhao J.L. 2018. MALAT1 induces osteosarcoma progression by targeting miR-206/CDK9 axis. J. Cell Physiol.234 (1), 950–957. https://doi.org/10.1002/jcp.26923

    Article  CAS  PubMed  Google Scholar 

  115. Chen Y., Huang W., Sun W., Zheng B., Wang C., Luo Z., Wang J., Yan W. 2018. LncRNA MALAT1 promotes cancer metastasis in osteosarcoma via activation of the PI3K-Akt signaling pathway. Cell Physiol. Biochem.51 (3), 1313–1326. https://doi.org/10.1159/000495550

    Article  CAS  PubMed  Google Scholar 

  116. Sun Y., Qin B. 2018. Long noncoding RNA MALAT1 regulates HDAC4-mediated proliferation and apoptosis via decoying of miR-140-5p in osteosarcoma cells. Cancer Med.7 (9), 4584–4597. https://doi.org/10.1002/cam4.1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sun Z., Zhang T., Chen B. 2019. Long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1. promotes proliferation and metastasis of osteosarcoma cells by targeting c-Met and SOX4 via miR-34a/c-5p and miR-449a/b. Med. Sci. Monit.25, 1410–1422. https://doi.org/10.12659/MSM.912703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Duan G., Zhang C., Xu C., Xu C., Zhang L., Zhang Y. 2019. Knockdown of MALAT1 inhibits osteosarcoma progression via regulating the miR‑34a/cyclin D1 axis. Int. J. Oncol.54 (1), 17–28. https://doi.org/10.3892/ijo.2018.4600

    Article  CAS  PubMed  Google Scholar 

  119. Jin X.M., Xu B., Zhang Y., Liu S.Y., Shao J., Wu L., Tang J.A., Yin T., Fan X.B., Yang T.Y. 2019. LncRNA SND1-IT1 accelerates the proliferation and migration of osteosarcoma via sponging miRNA-665 to upregulate POU2F1. Eur. Rev. Med. Pharmacol. Sci.23 (22), 9772–9780. https://doi.org/10.26355/eurrev_201911_19540

    Article  PubMed  Google Scholar 

  120. Hu X.H., Dai J., Shang H.L., Zhao Z.X., Hao Y.D. 2019. SP1-mediated upregulation of lncRNA ILF3-AS1 functions a ceRNA for miR-212 to contribute to osteosarcoma progression via modulation of SOX5. Biochem. Biophys. Res. Commun.511 (3), 510–517. https://doi.org/10.1016/j.bbrc.2019.02.110

    Article  CAS  PubMed  Google Scholar 

  121. Xing W., Xu W.Y., Chang L., Zhang K., Wang S.R. 2020. SP1-induced lncRNA LINC00689 overexpression contributes to osteosarcoma progression via the miR-655/SOX18 axis. Eur. Rev. Med. Pharmacol. Sci.24 (5), 2205–2217. https://doi.org/10.26355/eurrev_202003_20486

    Article  CAS  PubMed  Google Scholar 

  122. Wang M., Wang Z., Zhu X., Guan S., Liu Z. 2019. LncRNA KCNQ1OT1 acting as a ceRNA for miR-4458 enhances osteosarcoma progression by regulating CCND2 expression. In Vitro Cell Dev. Biol. Anim.55 (9), 694–702. https://doi.org/10.1007/s11626-019-00386-9

    Article  CAS  PubMed  Google Scholar 

  123. Chen X., Zhang C., Wang X. 2019. Long noncoding RNA DLEU1 aggravates osteosarcoma carcinogenesis via regulating the miR-671-5p/DDX5 axis. Artif. Cells Nanomed. Biotechnol.47 (1), 3322–3328. https://doi.org/10.1080/21691401.2019.1648285

    Article  CAS  PubMed  Google Scholar 

  124. Wang B., Qu X.L., Liu J., Lu J., Zhou Z.Y. 2019. HOT-AIR promotes osteosarcoma development by sponging miR-217 and targeting ZEB1. J. Cell Physiol.234 (5), 6173–6181. https://doi.org/10.1002/jcp.27394

    Article  CAS  PubMed  Google Scholar 

  125. Lian H., Xie P., Yin N., Zhang J., Zhang X., Li J., Zhang C. 2019. Linc00460 promotes osteosarcoma progression via miR-1224-5p/FADS1 axis. Life Sci.233, 116757. https://doi.org/10.1016/j.lfs.2019.116757

    Article  CAS  PubMed  Google Scholar 

  126. Liu J., Kong D., Sun D., Li J. 2019. Long non-coding RNA CCAT2 acts as an oncogene in osteosarcoma through regulation of miR-200b/VEGF. Artif. Cells Nanomed. Biotechnol.47 (1), 2994–3003. https://doi.org/10.1080/21691401.2019.1640229

    Article  CAS  PubMed  Google Scholar 

  127. Sun Y., Jia X., Wang M., Deng Y. 2019. Long noncoding RNA MIR31HG abrogates the availability of tumor suppressor microRNA-361 for the growth of osteosarcoma. Cancer Manag. Res.11, 8055–8064. https://doi.org/10.2147/CMAR.S214569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ba Z., Gu L., Hao S., Wang X., Cheng Z., Nie G. 2018. Downregulation of lncRNA CASC2 facilitates osteosarcoma growth and invasion through miR-181a. Cell Prolif.51 (1), 12409. https://doi.org/10.1111/cpr.12409

    Article  CAS  Google Scholar 

  129. Han W., Liu J. 2018. LncRNA-p21 inhibited the proliferation of osteosarcoma cells via the miR-130b/PTEN/AKT signaling pathway. J. Biomed. Pharmacother.97, 911–918. https://doi.org/10.1016/j.biopha.2017.11.014

    Article  CAS  Google Scholar 

  130. Yang C., Wang G., Yang J., Wang L. 2017. Long noncoding RNA NBAT1 negatively modulates growth and metastasis of osteosarcoma cells through suppression of miR-21. Am. J. Cancer Res.7 (10), 2009–2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang Y., Kong D. 2018. LncRNA GAS5 represses osteosarcoma cells growth and metastasis via sponging miR-203a. Cell Physiol. Biochem.45 (2), 844–855. https://doi.org/10.1159/000487178

    Article  CAS  PubMed  Google Scholar 

  132. Ye K., Wang S., Zhang H., Han H., Ma B., Nan W. 2017. Long noncoding RNA GAS5 suppresses cell growth and epithelial-mesenchymal transition in osteosarcoma by regulating the miR-221/ARHI pathway. J. Cell Biochem.118 (12), 4772–4781. https://doi.org/10.1002/jcb.26145

    Article  CAS  PubMed  Google Scholar 

  133. Zhang L., Wang Y., Zhang L., Xia X., Chao Y., He R., Han C., Zhao W. 2019. ZBTB7A, a miR-663a target gene, protects osteosarcoma from endoplasmic reticulum stress-induced apoptosis by suppressing lncRNA GAS5 expression. Cancer Lett.448, 105–116. https://doi.org/10.1016/j.canlet.2019.01.046

    Article  CAS  PubMed  Google Scholar 

  134. Ye F., Tian L., Zhou Q., Feng D. 2019. LncRNA FER1L4 induces apoptosis and suppresses EMT and the activation of PI3K/AKT pathway in osteosarcoma cells via inhibiting miR-18a-5p to promote SOCS5. Gene.721, 144093. https://doi.org/10.1016/j.gene.2019.144093

    Article  CAS  PubMed  Google Scholar 

  135. Xia P., Gu R., Zhang W., Sun Y.F. 2020. lncRNA CEBPA-AS1 overexpression inhibits proliferation and migration and stimulates apoptosis of OS cells via Notch signaling. Mol. Ther. Nucleic Acids.19, 1470–1481. https://doi.org/10.1016/j.omtn.2019.10.017

    Article  CAS  PubMed  Google Scholar 

  136. Zhou F.C., Zhang Y.H., Liu H.T., Song J., Shao J. 2020. LncRNA LINC00588 suppresses the progression of osteosarcoma by acting as a ceRNA for miRNA-1972. Front. Pharmacol.11, 255. https://doi.org/10.3389/fphar.2020.00255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhao J., Zhang C., Gao Z., Wu H., Gu R., Jiang R. 2018. Long non-coding RNA ASBEL promotes osteosarcoma cell proliferation, migration, and invasion by regulating microRNA-21. J. Cell Biochem.119 (8), 6461–6469. https://doi.org/10.1002/jcb.26671

    Article  CAS  PubMed  Google Scholar 

  138. Shen B., Zhou N., Hu T., Zhao W., Wu D., Wang S. 2019. LncRNA MEG3 negatively modified osteosarcoma development through regulation of miR-361-5p and FoxM1. J. Cell Physiol.234 (8), 13464–13480. https://doi.org/10.1002/jcp.28026

    Article  CAS  PubMed  Google Scholar 

  139. Ding L., Tian Y., Wang L., Bi M., Teng D., Hong S. 2019. Hypermethylated long noncoding RNA MEG3 promotes the progression of gastric cancer. Aging (Albany, NY). 11 (19), 8139–8155. https://doi.org/10.18632/aging.102309

    Article  CAS  Google Scholar 

  140. Pardini B., Sabo A.A., Birolo G., Calin G.A. 2019. Noncoding RNAs in extracellular fluids as cancer biomarkers: the new frontier of liquid biopsies. Cancer (Basel). 11 (8), 1170. https://doi.org/10.3390/cancers11081170

    Article  CAS  Google Scholar 

  141. Botti G., Giordano A., Feroce F., De Chiara A.R., Cantile M. 2019. Noncoding RNAs as circulating biomarkers in osteosarcoma patients. J. Cell Physiol.234, 19249–19255. https://doi.org/10.1002/jcp.28744

    Article  CAS  PubMed  Google Scholar 

  142. Wen J.J., Ma Y.D., Yang G.S., Wang G.M. 2017. Analysis of circulating long non-coding RNA UCA1 as potential biomarkers for diagnosis and prognosis of osteosarcoma. Eur. Rev. Med. Pharmacol. Sci.21 (3), 498–503.

    PubMed  Google Scholar 

  143. Ma B., Li M., Zhang L., Huang M., Lei J.B., Fu G.H., Liu C.X., Lai Q.W., Chen Q.Q., Wang Y.L. 2016. Upregulation of long non-coding RNA TUG1 correlates with poor prognosis and disease status in osteosarcoma. Tumour Biol.37 (4), 4445–4455. https://doi.org/10.1007/s13277-015-4301-6

    Article  CAS  PubMed  Google Scholar 

  144. Huo Y., Li Q., Wang X., Jiao X., Zheng J., Li Z., Pan X. 2017. MALAT1 predicts poor survival in osteosarcoma patients and promotes cell metastasis through associating with EZH2. Oncotarget.8 (29), 46993–47006. https://doi.org/10.18632/oncotarget.16551

    Article  PubMed  PubMed Central  Google Scholar 

  145. Chen D., Wang H., Zhang M., Jiang S., Zhou C., Fang B., Chen P. 2018. Abnormally expressed long non-coding RNAs in prognosis of osteosarcoma: A systematic review and meta-analysis. J. Bone Oncol.13, 76–90. https://doi.org/10.1016/j.jbo.2018.09.005

    Article  PubMed  PubMed Central  Google Scholar 

  146. Sun K., Zhao J. 2019. A risk assessment model for the prognosis of osteosarcoma utilizing differentially expressed lncRNAs. Mol. Med. Rep.19 (2), 1128–1138. https://doi.org/10.3892/mmr.2018.9768

    Article  CAS  PubMed  Google Scholar 

  147. Zhang J., Ju C., Zhang W., Xie L. 2018. LncRNA SNHG20 is associated with clinical progression and enhances cell migration and invasion in osteosarcoma. IUBMB Life.70 (11), 1115–1121. https://doi.org/10.1002/iub.1922

    Article  CAS  PubMed  Google Scholar 

  148. Loginov V.I., Filippova E.A., Kurevlev S.V., Fridman M.V., Burdennyi A.M., Braga E.A. 2018. Suppressive and hypermethylated microRNAs in the pathogenesis of breast cancer. Russ. J. Genet.54 (7), 770–787. https://doi.org/10.1134/S0016675818070081

    Article  CAS  Google Scholar 

  149. Stelzer G., Rosen R., Plaschkes I., Zimmerman S., Twik M., Fishilevich S., Iny Stein T., Nudel R., Lieder I., Mazor Y., Kaplan S., Dahary D., Warshawsky D., Guan-Golan Y., Kohn A., et al. The genecard suite: From genedata mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics.54, 1.30.1–1.30.33.https://doi.org/10.1002/cpbi.5

  150. Mi H., Thomas P. 2009. PANTHER pathway: An ontology-based pathway database coupled with data analysis tools. Methods Mol. Biol.563, 123–140. https://doi.org/10.1007/978-1-60761-175-2_7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Education of the Russian Federation via State Assignment to the Institute and the Ministry of Health of the Russian Federation for 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Braga.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by D. Timchenko

Abbreviations: OS, osteosarcoma; ceRNA, competitive endogenous RNA; lncRNA, long non-coding RNA; EMT, epithelial–mesenchymal transition; MALAT1, metastasis-associated lung adenocarcinoma transcript 1; SNHG, small nucleolar RNA host gene; TUG1, Taurine upregulated 1; XIST, X inactive-specific transcript; 3'-UTR, 3'-untranslated region.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kushlinskii, N.E., Fridman, M.V. & Braga, E.A. Long Non-Coding RNAs as Competitive Endogenous RNAs in Osteosarcoma. Mol Biol 54, 684–707 (2020). https://doi.org/10.1134/S0026893320050052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893320050052

Keywords

Navigation