Skip to main content
Log in

Acoustic Manipulation of Dense Nanorods in Microgravity

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Because the absence of sedimentation in zero-gravity makes the culture and the manipulation of cells or particles challenging, an attractive alternative is to use the Acoustic Radiation Force (ARF) as an artificial “acoustic gravity.” To evaluate the potential of this approach we studied the behavior of dense gold nanorods under ARF during a parabolic flight campaign. Using dense objects enhances the effect of gravity on the axial position of the so-called “levitation plane,” which is the equilibrium position at which ARF balances gravity in the laboratory. Further, using elongated objects, instead of spherical particles provides information about their spatial orientations in addition to their propulsion observed in standard gravity conditions. Our experiments clearly show a different collective organization and individual behavior of the rods in micro-gravity conditions. First, the axial location of the levitation plane is different in microgravity than in hypergravity: it matches the nodal pressure plane in microgravity while it is much lower than the nodal plane in hypergravity. Our experiments also show a sharp transition from horizontal to axial orientation of the rods axis. The propulsion of the rods also stops when transitioning to micro-gravity. A possible explanation for the sudden change of orientation and stopping of propulsion is the modification of the equilibrium between the axial and transverse components of the ARF. While these experiments show that some phenomena, like the propulsion of nanorods by ARF, may not be applicable in microgravity, they do confirm that acoustic manipulation of particles or cells in microgravity is possible, which paves for the development of many useful techniques for particles or cells manipulation, like cell cultures, during long-term space travel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ahmed, D., Baasch, T., Jang, B., Pane, S., Dual, J., Nelson, B.J.: Artificial swimmers propelled by acoustically activated flagella. Nano Lett. 16(8), 4968–4974 (2016)

    Article  Google Scholar 

  • Ahmed, S., Wang, W., Mair, L.O., Fraleigh, R.D., Li, S., Castro, L.A., Hoyos, M., Huang, T.J., Mallouk, T.E.: Steering acoustically propelled nanowire motors toward cells in a biologically compatible environment using magnetic fields. Langmuir 29(52), 16113–16118 (2013)

    Article  Google Scholar 

  • Ahmed, S., Wang, W., Bai, L., Gentekos, D.T., Hoyos, M., Mallouk, T.E.: Density and Shape Effects in the Acoustic Propulsion of Bimetallic Nanorod Motors. ACS Nano 10(4), 4763–4769 (2016)

    Article  Google Scholar 

  • Apfel, R.E, Tian, Y., Jankovsky, J., Shi, T., Chen, X., Holt, R.G., Trinh, E., Croonquist, A., Thornton, K.C, Sacco, A. Jr: Free oscillations and surfactant studies of superdeformed drops in microgravity. Physi. Rev. Lett. 78(10), 1912 (1997)

    Article  Google Scholar 

  • Avan, P., Normand, H., Giraudet, F., Gerenton, G., Denise, P.: Noninvasive in-ear monitoring of intracranial pressure during microgravity in parabolic flights. J. Appl. Physiol. 125(2), 353–361 (2018)

    Article  Google Scholar 

  • Baio, J., Martinez, A.F., Silva, I., Hoehn, C.V., Countryman, S., Bailey, L., Hasaniya, N., Pecaut, M.J, Kearns-Jonker, M.: Cardiovascular progenitor cells cultured aboard the international space station exhibit altered developmental and functional properties. npj Microgravity 4(1), 13 (2018)

    Article  Google Scholar 

  • Batchelor, G.K.: Slender-body theory for particles of arbitrary cross-section in stokes flow. J. Fluid Mech. 44(3), 419–440 (1970)

    Article  MathSciNet  Google Scholar 

  • Becker, J.L., Souza, G.R.: Using space-based investigations to inform cancer research on earth. Nature Reviews Cancer 13(5), 315–327 (2013)

    Article  Google Scholar 

  • Bertin, N., Spelman, T.A, Stephan, O., Gredy, L., Bouriau, M., Lauga, E., Marmottant, P.: Propulsion of bubble-based acoustic microswimmers. Physical Review Applied 4(6), 064012 (2015)

    Article  Google Scholar 

  • Camberos, V., Baio, J., Bailey, L., Hasaniya, N., Lopez, L.V., Kearns-Jonker, M.: Effects of spaceflight and simulated microgravity on yap1 expression in cardiovascular progenitors: Implications for cell-based repair. International Journal of Molecular Sciences, 20(11) (2019)

  • Castro, L.A., Hoyos, M.: Determination of the secondary bjerknes force in acoustic resonators on ground and in microgravity conditions. Microgravity Sci. Technol. 28(1), 11–18 (2016)

    Article  Google Scholar 

  • Collino, R. R, Ray, T. R, Fleming, R. C, Cornell, J. D, Compton, B. G, Begley, M. R: Deposition of ordered two–phase materials using microfluidic print nozzles with acoustic focusing. Extreme Mech. Lett. 8, 96–106 (2016)

    Article  Google Scholar 

  • Collis, J. F., Chakraborty, D., Sader, J. E.: Autonomous propulsion of nanorods trapped in an acoustic field. J. Fluid Mech. 825, 29–48 (2017)

    Article  MathSciNet  Google Scholar 

  • Doinikov, A.A.: Acoustic radiation pressure on a compressible sphere in a viscous fluid. J. Fluid Mech. 267(-1), 1 (1994)

    Article  MathSciNet  Google Scholar 

  • Dron, O.: Micro-manipulation acoustique de particules: application aux mesures par micro-PIV. PhD thesis, Paris (2011)

  • Fritsch-Yelle, J.M., Charles, J.B., Jones, M.M., Wood, M.L.: Microgravity decreases heart rate and arterial pressure in humans. J. Appl. Physiol. 80(3), 910–914 (1996)

    Article  Google Scholar 

  • Fushimi, T., Marzo, A., Drinkwater, B. W, Hill, T. L: Acoustophoretic volumetric displays using a fast-moving levitated particle. Appl. Phys. Lett. 115(6), 064101 (2019)

    Article  Google Scholar 

  • Garrett-Bakelman, F. E., Darshi, M., Green, S. J., Gur, R. C., Lin, L., Macias, B. R., McKenna, M. J., Meydan, C., Mishra, T., Nasrini, J., Piening, B. D., Rizzardi, L. F., Sharma, K., Siamwala, J. H., Taylor, L., Vitaterna, M. H., Afkarian, M., Afshinnekoo, E., Ahadi, S., Ambati, A., Arya, M., Bezdan, D., Callahan, C. M., Chen, S., Choi, A. M. K., Chlipala, G. E., Contrepois, K., Covington, M., Crucian, B. E., De Vivo, I., Dinges, D. F., Ebert, D. J., Feinberg, J. I., Gandara, J. A., George, K. A., Goutsias, J., Grills, G. S., Hargens, A. R., Heer, M., Hillary, R. P., Hoofnagle, A. N., Hook, V. Y. H., Jenkinson, G., Jiang, P., Keshavarzian, A., Laurie, S. S., Lee-McMullen, B., Lumpkins, S. B., MacKay, M., Maienschein-Cline, M. G., Melnick, A. M., Moore, T. M., Nakahira, K., Patel, H. H., Pietrzyk, R., Rao, V., Saito, R., Salins, D. N., Schilling, J. M., Sears, D. D., Sheridan, C. K., Stenger, M. B., Tryggvadottir, R., Urban, A. E., Vaisar, T., Van Espen, B., Zhang, J., Ziegler, M. G., Zwart, S. R., Charles, J. B., Kundrot, C. E., Scott, G. B. I., Bailey, S. M., Basner, M., Feinberg, A. P., Lee, S. M. C., Mason, C. E., Mignot, E., Rana, B. K., Smith, S. M., Snyder, M. P., Turek, F. W.: The nasa twins study: A multidimensional analysis of a year-long human spaceflight. Science 364, 6436 (2019)

    Google Scholar 

  • Gires, P.-Y., Duplat, J., Drezet, A., Poulain, C.: The acoustic radiation force: a gravitation-like field. arXiv:1805.01634 [physics] (2018)

  • Gor’kov, L.P.: On the forces acting on a small particle in an acoustical field in an ideal fluid. Soviet Physics - Doklady 773–775 (1962)

  • Grimm, D., Wehland, M., Pietsch, J., Aleshcheva, G., Wise, P., van Loon, J., Ulbrich, C., Magnusson, N. E., Infanger, M., Bauer, J.: Growing tissues in real and simulated microgravity: New methods for tissue engineering. Tissue Engineering Part B: Reviews 20(6), 555–566 (2014)

    Article  Google Scholar 

  • Gutiérrez-Ramos, S., Hoyos, M., Ruiz-Suárez, J.C.: Induced clustering of escherichia coli by acoustic fields. Sci. Rep. 8(1), 4668 (2018)

    Article  Google Scholar 

  • Jha, R., Wu, Q., Singh, M., Preininger, M. K., Han, P., Ding, G., Cho, H. C., Jo, H., Maher, K. O., Wagner, M. B., Xu, C.: Simulated microgravity and 3d culture enhance induction, viability, proliferation and differentiation of cardiac progenitors from human pluripotent stem cells. Sci. Rep. 6 (1), 30956 (2016)

    Article  Google Scholar 

  • King, L. V.: On the acoustic radiation pressure on spheres. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences 147(861), 212–240 (1934)

    Google Scholar 

  • Louf, J.-F., Bertin, N., Dollet, B., Stephan, O., Marmottant, P.: Hovering microswimmers exhibit ultrafast motion to navigate under acoustic forces. Advanced Materials Interfaces 5(16), 1800425 (2018)

    Article  Google Scholar 

  • Marston, P. L, Trinh, E. H, Depew, J., Asaki, T. J: Oscillatory dynamics of single bubbles and agglomeration in a sound field in microgravity (1994)

  • Marston, P. L, Wei, W., Thiessen, D. B: Acoustic radiation force on elliptical cylinders and spheroidal objects in low frequency standing waves. In: AIP Conference Proceedings, vol. 838, pp 495–499. AIP (2006)

  • Mitri, F.G.: Acoustic radiation force on oblate and prolate spheroids in bessel beams. Wave Motion 57, 231–238 (2015)

    Article  MathSciNet  Google Scholar 

  • Nadal, F., Lauga, E.: Asymmetric steady streaming as a mechanism for acoustic propulsion of rigid bodies. Phys. Fluids 26(8), 082001 (2014)

    Article  Google Scholar 

  • Ogoh, S., Marais, M., Lericollais, R., Denise, P., Raven, P. B, Normand, H.: Interaction between graviception and carotid baroreflex function in humans during parabolic flight-induced microgravity. J. Appl. Physiol. 125(2), 634–641 (2018)

    Article  Google Scholar 

  • Sabrina, S., Tasinkevych, M., Ahmed, S., Brooks, A. M, de la Cruz, M.O., Mallouk, T. E, Bishop, K.J.M.: Shape-directed microspinners powered by ultrasound. ACS nano 12(3), 2939–2947 (2018)

    Article  Google Scholar 

  • Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: Nih image to imagej: 25 years of image analysis. Nat. Methods 9(7), 671 (2012)

    Article  Google Scholar 

  • Settnes, M., Bruus, H.: Forces acting on a small particle in an acoustical field in a viscous fluid. Phys. Rev. E. 85(1), 016327 (2012)

    Article  Google Scholar 

  • Silva, G.T., Drinkwater, B. W.: Acoustic radiation force exerted on a small spheroidal rigid particle by a beam of arbitrary wavefront: Examples of traveling and standing plane waves. J. Acoust. Soc. Am. 144(5), EL453–EL459 (2018)

    Article  Google Scholar 

  • Tuziuti, T., Kozuka, T., Mitome, H.: Measurement of distribution of acoustic radiation force perpendicular to sound beam axis. Jpn. J. Appl. Phys. 38(Part 1, No. 5B), 3297–3301 (1999)

    Article  Google Scholar 

  • Wang, T. G, Anilkumar, A.V., Lee, C.P., Lin, K.C.: Bifurcation of rotating liquid drops: results from usml-1 experiments in space (1994)

  • Wang, W., Castro, L. A., Hoyos, M., Mallouk, T. E: Autonomous motion of metallic microrods propelled by ultrasound. ACS nano 6(7), 6122–6132 (2012)

    Article  Google Scholar 

  • Wang, Y., Hernandez, R.M. , Bartlett, D.J. , Bingham, J.M. , Kline, T.R. , Sen, A., Mallouk, T.E. : Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions . Langmuir 22(25), 10451–10456 (2006)

    Article  Google Scholar 

  • Whitworth, G., Coakley, W.T.: Particle column formation in a stationary ultrasonic field. J. Acoust. Soc. Am. 91(1), 79–85 (1992)

    Article  Google Scholar 

  • Whitworth, G, Grundy, M.A., Coakley, WT: Transport and harvesting of suspended particles using modulated ultrasound. Ultrasonics 29(6), 439–444 (1991)

    Article  Google Scholar 

  • Wijaya, F.B., Lim, K.-M.: Numerical calculation of acoustic radiation force and torque acting on rigid non-spherical particles. Acta Acustica united with Acustica 101(3), 531–542 (2015)

    Article  Google Scholar 

  • Yosioka, K., Kawasima, Y.: Acoustic radiation pressure on a compressible sphere. Acta Acustica united with Acustica 5(3), 167–173 (1955)

    Google Scholar 

  • Zhou, C., Zhao, L., Wei, M., Wang, W.: Twists and turns of orbiting and spinning metallic microparticles powered by Megahertz ultrasound. ACS Nano 11(12), 12668–12676 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the CNES for funding the experiments and Novespace for their continuous help in the preparation and conception of the setup adapted to the Airbus Zero-G constraints. We also wish to thank the Fondation Bettencourt and FIRE (Frontiers of Innovation in Research and Education) Doctoral School for G. Dumy’s PhD grant. We also thank A. Castro and L. Bellebon for their participation to the zero-g flights.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Luc Aider.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: The Effect of Gravity on Physical and Biological Phenomena

Guest Editor: Valentina Shevtsova

Electronic supplementary material

Below is the link to the electronic supplementary material.

(M4V 3.05 MB)

(MP4 3.31 MB)

(M4V 4.27 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumy, G., Jeger-Madiot, N., Benoit-Gonin, X. et al. Acoustic Manipulation of Dense Nanorods in Microgravity. Microgravity Sci. Technol. 32, 1159–1174 (2020). https://doi.org/10.1007/s12217-020-09835-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-020-09835-7

Keywords

Navigation