Skip to main content
Log in

An Existence Result for Quasi-equilibrium Problems via Ekeland’s Variational Principle

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper deals with the existence of solutions to equilibrium and quasi-equilibrium problems without any convexity assumption. Coverage includes some equivalences to the Ekeland variational principle for bifunctions and basic facts about transfer lower continuity. An application is given to systems of quasi-equilibrium problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Introduced by R. Baire, see [31] and the references therein.

  2. \({\mathrm{Fix}}(K)\) denotes the set of fixed points of K.

References

  1. Muu, L., Oettli, W.: Convergence of an adaptive penalty scheme for finding constrained equilibria. Nonlinear Anal. Theory Methods Appl. 18(12), 1159–1166 (1992). https://doi.org/10.1016/0362-546X(92)90159-C

    Article  MathSciNet  MATH  Google Scholar 

  2. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Student 63(1–4), 123–145 (1994)

    MathSciNet  MATH  Google Scholar 

  3. Fan, K.: A minimax inequality and applications. In: Inequalities, III (Proc. Third Sympos., Univ. California, Los Angeles, Calif., 1969; dedicated to the memory of Theodore S. Motzkin), pp. 103–113 (1972)

  4. von Neumann, J.: Zur theorie der gesellschaftsspiele. Math. Ann. 100(1), 295–320 (1928). https://doi.org/10.1007/BF01448847

    Article  MathSciNet  MATH  Google Scholar 

  5. Ansari, Q., Köbis, E., Yao, J.C.: Vector Variational Inequalities and Vector Optimization: Theory and Applications. Springer, Berlin (2017)

    MATH  Google Scholar 

  6. Bianchi, M., Pini, R.: A note on equilibrium problems with properly quasimonotone bifunctions. J. Glob. Optim. 20, 67–76 (2001)

    Article  MathSciNet  Google Scholar 

  7. Iusem, A., Sosa, W.: New existence results for equilibrium problems. Nonlinear Anal. 52, 621–635 (2003)

    Article  MathSciNet  Google Scholar 

  8. Iusem, A., Kassay, G., Sosa, W.: On certain conditions for the existence of solutions of equilibrium problems. Math. Program. 116, 259–273 (2009)

    Article  MathSciNet  Google Scholar 

  9. Iusem, A., Kassay, G., Sosa, W.: An existence result for equilibrium with some surjectivity consequences. J. Convex Anal. 16, 807–826 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Nasri, M., Sosa, W.: Equilibrium problems and generalized Nash games. Optimization 60, 1161–1170 (2011)

    Article  MathSciNet  Google Scholar 

  11. Castellani, M., Giuli, M.: On equivalent equilibrium problems. J. Optim. Theory Appl. 147, 157–168 (2010)

    Article  MathSciNet  Google Scholar 

  12. Castellani, M., Giuli, M.: Refinements of existence results for relaxed quasimonotone equilibrium problems. J. Glob. Optim. 57, 1213–1227 (2013)

    Article  MathSciNet  Google Scholar 

  13. Cotrina, J., García, Y.: Equilibrium problems: existence results and applications. Set Valued Var. Anal. 26, 159–177 (2018). https://doi.org/10.1007/s11228-017-0451-6

    Article  MathSciNet  MATH  Google Scholar 

  14. Fan, K.: A generalization of Tychonoff’s fixed point theorem. Math. Ann. 142, 305–310 (1961)

    Article  MathSciNet  Google Scholar 

  15. Brézis, H., Nirenberg, L., Stampacchia, G.: A remark on Ky Fan’s minimax principle. Boll. Un. Mat. Ital. 4(6), 293–300 (1972)

    MathSciNet  MATH  Google Scholar 

  16. Bianchi, M., Kassay, G., Pini, R.: Existence of equilibria via Ekeland’s principle. J. Math. Anal. 305, 502–512 (2005)

    Article  MathSciNet  Google Scholar 

  17. Aleche, B., Radulescu, V.: The Ekeland variational principle for equilibrium problems revisited and applications. Nonlinear Anal. RWA 23, 17–25 (2015)

    Article  MathSciNet  Google Scholar 

  18. Oettli, W., Théra, M.: Equivalents of Ekeland’s principle. Bull. Austral. Math. Soc. 48(3), 385–392 (1993). https://doi.org/10.1017/S0004972700015847

    Article  MathSciNet  MATH  Google Scholar 

  19. Mosco, U.: Implicit variational problems and quasi variational inequalities. In: Mawhin, J., Waelbroeck, L., Gossez, J.P., Lami Dozo, E.J. (eds.) Nonlinear Operators and the Calculus of Variations, pp. 83–156. Springer, Berlin (1976)

    Chapter  Google Scholar 

  20. Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. 4OR 5(3), 173–210 (2007). https://doi.org/10.1007/s10288-007-0054-4

    Article  MathSciNet  MATH  Google Scholar 

  21. Cotrina, J., Zúñiga, J.: Quasi-equilibrium problems with non-self constraint map. J. Glob. Optim. 75, 177–197 (2019). https://doi.org/10.1007/s10898-019-00762-5

    Article  MathSciNet  MATH  Google Scholar 

  22. Cotrina, J., Hantoute, A., Svensson, A.: Existence of quasi-equilibria on unbounded constraint sets. Optimization (2020). https://doi.org/10.1080/02331934.2020.1778690

    Article  Google Scholar 

  23. Aussel, D., Cotrina, J., Iusem, A.: An existence result for quasi-equilibrium problems. J. Convex Anal. 24, 55–66 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Castellani, M., Giuli, M., Pappalardo, M.: A Ky Fan minimax inequality for quasiequilibria on finite-dimensional spaces. J. Optim. Theory Appl. 179, 53–64 (2018)

    Article  MathSciNet  Google Scholar 

  25. Cotrina, J., Zúñiga, J.: A note on quasi-equilibrium problems. Oper. Res. Lett. 46, 138–140 (2018)

    Article  MathSciNet  Google Scholar 

  26. Castellani, M., Giuli, M.: Ekeland’s principle for cyclically monotone equilibrium problems. Nonlinear Anal. RWA 32, 213–228 (2016)

    Article  Google Scholar 

  27. Tian, G.Q., Zhou, J.: Transfer continuities, generalizations of the Weierstrass and maximum theorems: a full characterization. J. Math. Econ. 24, 281–303 (1995)

    Article  MathSciNet  Google Scholar 

  28. Debreu, G.: A social equilibrium existence theorem. Proc. Natl. Acad. Sci. 38(10), 886–893 (1952). https://doi.org/10.1073/pnas.38.10.886

    Article  MathSciNet  MATH  Google Scholar 

  29. Ansari, Q.H., Idzik, A., Yao, J.C.: Coincidence and fixed point theorems with applications. Topol. Methods Nonlinear Anal. 15(1), 191–202 (2000)

    Article  MathSciNet  Google Scholar 

  30. Ansari, Q.H., Chan, W.K., Yang, X.Q.: The system of vector quasi-equilibrium problems with applications. J. Glob. Optim. 29(1), 45–57 (2004). https://doi.org/10.1023/B:JOGO.0000035018.46514.ca

    Article  MathSciNet  MATH  Google Scholar 

  31. Penot, J.P., Théra, M.: Semicontinuous mappings in general topology. Arch. Math. (Basel) 38(2), 158–166 (1982). https://doi.org/10.1007/BF01304771

    Article  MathSciNet  MATH  Google Scholar 

  32. Choquet, G.: Cours d’analyse. Tome II: Topologie. Espaces topologiques et espaces métriques. Fonctions numériques. Espaces vectoriels topologiques. Deuxième édition, revue et corrigée. Masson et Cie, Éditeurs, Paris (1969)

  33. Hadjisavvas, N., Khatibzadeh, H.: Maximal monotonicity of bifunctions. Optimization 59(2), 147–160 (2010)

    Article  MathSciNet  Google Scholar 

  34. Alizadeh, M.H., Bianchi, M., Hadjisavvas, N., Pini, R.: On cyclic and \(n\)-cyclic monotonicity of bifunctions. J. Glob. Optim. 60(4), 599–616 (2014). https://doi.org/10.1007/s10898-013-0113-7

    Article  MathSciNet  MATH  Google Scholar 

  35. Giuli, M.: Cyclically monotone equilibrium problems and Ekeland’s principle. Decis. Econ. Finance 40(1–2), 231–242 (2017). https://doi.org/10.1007/s10203-017-0188-6

    Article  MathSciNet  MATH  Google Scholar 

  36. Bianchi, M., Schaible, S.: An extension of pseudolinear functions and variational inequality problems. J. Optim. Theory Appl. 104, 59–71 (2000)

    Article  MathSciNet  Google Scholar 

  37. Bianchi, M., Hadjisavvas, N., Schaible, S.: On pseudomonotone maps \(T\) for which \(-T\) is also pseudomonotone. J. Convex Anal. 10(1), 149–168 (2003)

    MathSciNet  MATH  Google Scholar 

  38. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974). https://doi.org/10.1016/0022-247X(74)90025-0

    Article  MathSciNet  MATH  Google Scholar 

  39. Al-Homidan, S., Ansari, Q.H., Kassay, G.: Vectorial form of Ekeland variational principle with applications to vector equilibrium problems. Optimization 69(3), 415–436 (2020). https://doi.org/10.1080/02331934.2019.1589469

    Article  MathSciNet  MATH  Google Scholar 

  40. Aussel, D., Cotrina, J.: Quasimonotone quasivariational inequalities: existence results and applications. J. Optim. Theory Appl. 158, 637–652 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We wish to thank the referees and the associate editor for their helpful comments and suggestions. Research of M. Théra is supported by the Australian Research Council (ARC) Grant DP160100854 and benefited from the support of the FMJH Program PGMO and from the support of EDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Cotrina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cotrina, J., Théra, M. & Zúñiga, J. An Existence Result for Quasi-equilibrium Problems via Ekeland’s Variational Principle. J Optim Theory Appl 187, 336–355 (2020). https://doi.org/10.1007/s10957-020-01764-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-020-01764-0

Keywords

Mathematics Subject Classification

Navigation