Skip to main content
Log in

Influence of Coal Microstructure on Gas Content of the Face Area

  • Geomechanics
  • Published:
Journal of Mining Science Aims and scope

Abstract

The author study gas content of coal seams in the face areas in mines of SUEK-Kuzbass. It is found that gas content of coal samples from newly exposed face ranges between 2.4 and 13.5 m3/t and makes 32–60% of natural gas content of studied seams. The coal seams with lower gas content in face area have more ordered microstructure estimated by mean of plotting entropy–structure complexity diagrams based on thousandfold enlarged digital images of coal surface. Coal seams with more chaotic structural arrangement possess both higher natural gas content and gas saturation in face area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ruban, A.D. and Zaburdyaev, V.S., Efficiency of Gas Drainage in Coal Mining, Ugol’, 2010, no. 11, pp. 10–13.

    Google Scholar 

  2. Karkashadze, G.G., Alekseev, A.D., Starikov, G.P., Vasil’kovskii, V.A., and Spozhakin, A.I., Improvement of the Technique for Load Calculation for a Mining Face Taking into Account Methane Pressure in a Coal Bed, Gornyi Zhural, 2009, no. 4, pp. 47–50.

    Google Scholar 

  3. Alexeev A. D., Feldman E. P., and Vasilenko T. A. Methane Desorption from a Coal-Bed, Fuel, 2007, vol. 86, no. 16, pp. 2547–2580.

    Article  Google Scholar 

  4. Zaburdyaev, V.S., Methane Content of Coal Mines, Bezop. Truda v Prom., 2013, no. 8, pp. 60–64.

    Google Scholar 

  5. Zaburdyaev, V.S., Coal Mines with High Content of Methane: Content, Release and Drainage, Bezop. Truda v Prom., 2012, no. 11, pp. 28–32.

    Google Scholar 

  6. Zaburdyaev, V.S., Methane Emission from Broken Coal in the Face Area, Bezop. Truda v Prom., 2019, no. 11, pp. 13–17.

    Google Scholar 

  7. Zaburdyaev, V.S., Influence of Coal Petrography on Borehole Gas Recovery Factor, Bezop. Truda v Prom., 2019, no. 1, pp. 14–18.

    Google Scholar 

  8. Alekseev, A.D., Fizika uglya i gornykh protsessov (Physics of Coal and Processes in Mines), Kiev: Naukova dumka, 2010.

    Google Scholar 

  9. Lukinov, V.V., Pimonenko, L.I., Baranovskii, V.I., Gunya, D.P., and Tkachenko, A.V., Petrographic and Physical Characteristics of Coal Substance in Kink Bands, Ugol’ Ukrainy, 2012, no. 2, pp. 36–38.

    Google Scholar 

  10. Shepeleva, S.A., Dyrdin, V.V., Kim, T.L., Smirnov, V.G., and Gvozdikova, T.N., Metan i vybrosoopasnost’ ugol’nykh plastov (Coalbed Methane and Outburst Hazard), Tomsk: TGU, 2015.

    Google Scholar 

  11. Bulat, A.F., Mineev, S.P., and Prusova, A.A., Generation of Methane Absorption under Relaxation of Molecular Structure of Coal, J. Min. Sci., 2016, vol. 52, no. 1, pp. 70–77.

    Article  Google Scholar 

  12. Feng Yan-Yan, Jiang Cheng-Fa, Liu Dai-Jun, and Chu Weib, Microstructure and Its Influence on CH4 Adsorption Behavior of Deep Coal, Chinese Phys. B, 2014, vol. 23, no. 2 (2014) 028201. DOI: https://doi.org/10.1088/1674-1056/23/2/028201.

    Article  Google Scholar 

  13. Tang, Z., Yang, S., Zhai, C., and Xu, Q., Coal Pores and Fracture Development during CBM Drainage: Their Promoting Effects on the Propensity for Coal and Gas Outbursts, J. Natural Gas Sci. and Eng., 2018, vol. 51, pp. 9–17.

    Article  Google Scholar 

  14. Ul’yanova, E.V., Malinnikova, O.N., Dolgova, M.O., Zverev, I.V., Burchak, A.V., Molchanov, A.N., and Pichka, T.V., Structure and Methane Content of Fossil Coals, Solid Fuel Chemistry, 2016, vol. 50, no. 4, p. 207.

    Article  Google Scholar 

  15. Ul’yanova, E.V., Malinnikova, O.N., Burchak, A.V., Balalaev, A.K., and Baranovskii, V.I., Gas Content and Structure of Coal in Donets Basin, J. Min. Sci., 2017, vol. 53, no. 3, pp. 655–662.

    Google Scholar 

  16. Li, Q., Chen, J., and He, J., Physical Properties, Vitrinite Reflectance, and Microstructure of Coal, Taiyuan Formation, Qinshui Basin, China, Appl. Geophys, 2017, vol. 14, no. 4, pp. 480–491. Available at: https://doi.org/10.1007/s11770-017-0651-8.

    Article  Google Scholar 

  17. Zhao, Y., Song, H., Liu, S., Zhang, C., Dou, L., and Cao, A., Mechanical Anisotropy of Coal with Considerations of Realistic Microstructures and External Loading Directions, Int. J. of Rock Mech. and Min. Sci, 2019, vol. 116, pp. 111–121. Available at: https://doi.org/10.1016/j.ijrmms.2019.03.005.

    Article  Google Scholar 

  18. Bo Han, Guang-yin Lu, Zi-qiang Zhu, You-jun Guo, and Yun-wei Zhao, Microstructure Features of Powdery Coal-Bearing Soil Based on the Digital Image Measurement Technology and Fractal Theory, Geotech. and Geolog. Eng, 2019, issue 3. Available at: https://doi.org/10.1007/s10706-018-0691-8.

  19. Wang Gang, Zhang Xiaoqiang, Yang Xinxiang, Sun Lulu, and Qu Hongyuan, Establishment and Application Study of Digital Model for Coal Microstructure Based on CT Images, J. of Eng. Sci. and Technol. Rev, 2016, vol. 9, no. 4, pp. 177–184.

    Article  Google Scholar 

  20. Kossovich, E.L., Epshtein, S.A., Prosina, V.A., Borodich, F.M., Galanov, B.A., and Minin, M.G., Mechanical, Structural and Scaling Properties of Coals: Depth-Sensing Indentation Studies, App. Phys. A: Materials Sci. and Proc., 2019, vol. 125, No. 3, p. 195.

    Article  Google Scholar 

  21. Liu, G., Liu, J., Liu, L., Ye, D., and Gao, F., A Fractal Approach to Fully-Couple Coal Deformation and Gas Flow, Fuel, 2019, vol. 240, pp. 219–236. Available at: https://doi.org/10.1016/j.fuel.2018.11.140.

    Article  Google Scholar 

  22. Wang, H., Zhang, J., Yang, Y.S., Li, R., Li, J., Yang, J., and Liu, K., Microstructure-Based Multi-Scale Evaluation of Fluid Flow in an Anthracite Coal Sample with Partially Percolating Voxels, Modeling and Simulation in Materials Sci. and Eng., 2019, vol. 27, no. 6, pp. 1–13. Available at: https://doi.org/10.1088/1361-651X/ab1b02.

    Article  Google Scholar 

  23. Brazhe, A., Shearlet-Based Measures of Entropy and Complexity for Two-Dimensional Patterns, Phys. Rev. E, 2018, vol. 97, no. 6, pp. 061301–061307. DOI: https://doi.org/10.1103/PhysRevE.97.061301

    Article  Google Scholar 

  24. Malinnikova, O., Uchaev, Dm., Uchaev, D., Malinnikov, V., and Ulyanova, E., Complexity-Entropy Diagrams and Their Application to the Study of Coal Tectonic Disturbance, E3S Web of Conf, 2019, vol. 129, pp. 01016–01023. Available at: https://doi.org/10.1051/e3sconf/201912901016.

    Article  Google Scholar 

  25. Ul’yanova, E.V., Malinnikova, O.N., Pashichev, B.N., and Malinnikova, E.V., Microstructure of Coal Before and after Gas-Dynamic Phenomena, J. Min. Sci., 2019, vol. 55, no. 5, pp. 701–707.

    Article  Google Scholar 

  26. Rukovodstvo po bezopasnosti “Rekomendatsii po opredeleniyu gazonosnosti ugol’nykh plastov” (Safety Manual: Guides on Coalbed Gas Content Determination), Moscow: ZAO NTS PB, 2017, series 05, issue 48.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Malinnikova.

Additional information

Russian Text © The Author(s), 2020, published in Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2020, No. 3, pp. 25–33.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malinnikova, O.N., Ul’yanova, E.V., Kharchenko, A.V. et al. Influence of Coal Microstructure on Gas Content of the Face Area. J Min Sci 56, 351–358 (2020). https://doi.org/10.1134/S106273912003683X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106273912003683X

Keywords

Navigation