Skip to main content
Log in

Treatment with Laevo (l)-carnitine reverses the mitochondrial function of human embryos

  • Embryo Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

A Correction to this article was published on 30 April 2021

This article has been updated

Abstract

Purpose

Laevo (l)-carnitine plays important roles in reducing the cytotoxic effects of free fatty acids by forming acyl-carnitine and promoting beta-oxidation, leading to alleviation of cell damage. Recently, the mitochondrial functions in morula has been shown to decrease with the maternal age. Here, we assessed the effect of l-carnitine on mitochondrial function in human embryos and embryo development.

Methods

To examine the effect of l-carnitine on mitochondrial function in morulae, 38 vitrified–thawed embryos at the 6–11-cell stage on day 3 after ICSI were donated from 19 couples. Each couple donated two embryos. Two siblings from each couple were divided randomly into two groups and were cultured in medium with or without 1 mM l-carnitine. The oxygen consumption rates (OCRs) were measured at morula stage. The development of 1029 zygotes cultured in medium with or without l-carnitine was prospectively analyzed.

Results

Addition of l-carnitine to the culture medium significantly increased the OCRs of morulae and improved the morphologically-good blastocyst formation rate per zygote compared with sibling embryos. Twenty healthy babies were born from embryos cultured in l-carnitine-supplemented medium after single embryo transfers.

Conclusion(s)

l-carnitine is a promising culture medium supplement that might be able to counteract the decreased mitochondrial function in human morula stage embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  1. Cimadomo D, Fabozzi G, Vaiarelli A, Ubaldi N, Ubaldi FM, Rienzi L. Impact of maternal age on oocyte and embryo competence. Front Endocrinol. 2018;29:327.

    Google Scholar 

  2. Nagaoka SI, Hassold TJ, Hunt PA. Human aneuploidy: mechanisms and new insights into an age-old problem. Nat Rev Genet. 2012;13:493–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Sakakibara Y, Hashimoto S, Nakaoka Y, Kouznetsova A, Höög C, Kitajima TS. Bivalent separation into univalents precedes age-related meiosis I errors in oocytes. Nat Commun. 2015;6:7550.

    PubMed  Google Scholar 

  4. Morimoto N, Hashimoto S, Yamanaka M, Nakano T, Satoh M, Nakaoka Y, et al. Mitochondrial oxygen consumption rate of human embryos declines with maternal age. J Assist Reprod Genet. 2020;37:1815–21.

    PubMed  Google Scholar 

  5. Trimarchi JR, Liu L, Porterfield DM, Smith PJ, Keefe DL. Oxidative phosphorylation-dependent and -independent oxygen consumption by individual preimplantation mouse embryos. Biol Reprod. 2000;62:1866–74.

    CAS  PubMed  Google Scholar 

  6. Hashimoto S, Morimoto N, Yamanaka M, Matsumoto H, Yamochi T, Goto H, et al. Quantitative and qualitative changes of mitochondria in human preimplantation embryos. J Assist Reprod Genet. 2017;34:573–80.

    PubMed  PubMed Central  Google Scholar 

  7. Watson AJ. The cell biology of blastocyst development. Mol Reprod Dev. 1992;33:492–504.

    CAS  PubMed  Google Scholar 

  8. Bratic A, Larsson NG. The role of mitochondria in aging. J Clin Invest. 2013;123:951–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Xu B, Guo N, Zhang XM, Shi W, Tong XH, Iqbal F, et al. Oocyte quality is decreased in women with minimal or mild endometriosis. Sci Rep. 2015;5:10779.

    PubMed  PubMed Central  Google Scholar 

  10. Zárate S, Astiz M, Magnani N, Imsen M, Merino F, Álvarez S, et al. Hormone deprivation alters mitochondrial function and lipid profile in the hippocampus. J Endocrinol. 2017;233:1–14.

    PubMed  Google Scholar 

  11. Jang JY, Blum A, Liu J, Finkel T. The role of mitochondria in aging. J Clin Invest. 2018;128:3662–70.

    PubMed  PubMed Central  Google Scholar 

  12. Gonzalez-Freire M, de Cabo R, Bernier M, Sollott SJ, Fabbri E, Navas P, et al. Reconsidering the role of mitochondria in aging. J Gerontol A Biol Sci. 2015;70:1334–42.

    CAS  Google Scholar 

  13. Haggarty P, Wood M, Ferguson E, Hoad G, Srikantharajah A, Milne E, et al. Fatty acid metabolism in human preimplantation embryos. Hum Reprod. 2006;21:766–73.

    CAS  PubMed  Google Scholar 

  14. Gardner DK, Lane M, Batt P. Uptake and metabolism of pyruvate and glucose by individual sheep preattachment embryos developed in vivo. Mol Reprod Dev. 1993;36:313–9.

    CAS  PubMed  Google Scholar 

  15. Thompson JG, Partridge RJ, Houghton FD, Cox CI, Leese HJ. Oxygen uptake and carbohydrate metabolism by in vitro derived bovine embryos. J Reprod Fertil. 1996;106:299–306.

    CAS  PubMed  Google Scholar 

  16. Hillman N, Flynn TJ. The metabolism of exogenous fatty acids by preimplantation mouse embryos developing in vitro. J Embryol Exp Morphol. 1980;56:157–68.

    CAS  PubMed  Google Scholar 

  17. Miyamoto K, Sato EF, Kasahara E, Jikumaru M, Hiramoto K, Tabata H, et al. Effect of oxidative stress during repeated ovulation on the structure and functions of the ovary, oocytes, and their mitochondria. Free Radic Biol Med. 2010;49:674–81.

    CAS  PubMed  Google Scholar 

  18. Ottosen LD, Hindkjaer J, Lindenberg S, Ingerslev HJ. Murine pre-embryo oxygen consumption and developmental competence. J Assist Reprod Genet. 2007;24:359–65.

    PubMed  PubMed Central  Google Scholar 

  19. Magnusson C, Hillensjo T, Hamberger L, Nilsson L. Oxygen consumption by human oocytes and blastocysts grown in vitro. Hum Reprod. 1986;1:183–4.

    CAS  PubMed  Google Scholar 

  20. Yamanaka M, Hashimoto S, Amo A, Ito-Sasaki T, Abe H, Morimoto Y. Developmental assessment of human vitrified-warmed blastocysts based on oxygen consumption. Hum Reprod. 2011;26:3366–71.

    CAS  PubMed  Google Scholar 

  21. Bremer J. Carnitine--metabolism and functions. Physiol Rev. 1983;63:1420–80.

    CAS  PubMed  Google Scholar 

  22. Vanella A, Russo A, Acquaviva R, Campisi A, Di Giacomo C, Sorrenti V, et al. L-propionyl-carnitine as superoxide scavenger, antioxidant, and DNA cleavage protector. Cell Biol Toxicol. 2000;16:99–104.

    CAS  PubMed  Google Scholar 

  23. Chang B, Nishikawa M, Nishiguchi S, Inoue M. L-Carnitine inhibits hepatocarcinogenesis via protection of mitochondria. Int J Cancer. 2005;113:719–29.

    CAS  PubMed  Google Scholar 

  24. Hashimoto S. Application of in vitro maturation to assisted reproductive technology. J Reprod Dev. 2009;55:1–10.

    CAS  PubMed  Google Scholar 

  25. Dunning KR, Akison LK, Russell DL, Norman RJ, Robker RL. Increased beta-oxidation and improved oocyte developmental competence in response to l-carnitine during ovarian in vitro follicle development in mice. Biol Reprod. 2011;85:548–55.

    CAS  PubMed  Google Scholar 

  26. Dunning KR, Cashman K, Russell DL, Thompson JG, Norman RJ, Robker RL. Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biol Reprod. 2010;83:909–18.

    CAS  PubMed  Google Scholar 

  27. Abdelrazik H, Sharma R, Mahfouz R, Agarwal A. L-Carnitine decreases DNA damage and improves the in vitro blastocyst development rate in mouse embryos. Fertil Steril. 2009;91:589–96.

    CAS  PubMed  Google Scholar 

  28. Kim MK, Park JK, Paek SK, Kim JW, Kwak IP, Lee HJ, et al. Effects and pregnancy outcomes of L-carnitine supplementation in culture media for human embryo development from in vitro fertilization. J Obstet Gynaecol Res. 2018;44:2059–66.

    CAS  PubMed  Google Scholar 

  29. Nakao K, Nakagata N, Katsuki M. Simple and efficient vitrification procedure for cryopreservation of mouse embryos. Exp Anim. 1997;46:231–4.

    CAS  PubMed  Google Scholar 

  30. Biggers JD, Racowsky C. The development of fertilized human ova to the blastocyst stage in KSOMAA medium: is a two-step protocol necessary? Reprod Biomed Online. 2002;5:133–40.

    PubMed  Google Scholar 

  31. Hashimoto S, Minami N, Takakura R, Yamada M, Imai H, Kashima N. Low oxygen tension during in vitro maturation is beneficial for supporting the subsequent development of bovine cumulus-oocyte complexes. Mol Reprod Dev. 2000;57:353–60.

    CAS  PubMed  Google Scholar 

  32. Hashimoto S, Kato N, Saeki K, Morimoto Y. Selection of high potential embryos by culture in poly-(dimethylsiloxane) microwells and time-lapse imaging. Fertil Steril. 2012;97:332–7.

    PubMed  Google Scholar 

  33. Kuwayama M, Vajta G, Leda S, Kato O. Comparison of open and closed methods for vitrification of human embryos and the elimination of potential contamination. Reprod Biomed Online. 2005;11:608–14.

    PubMed  Google Scholar 

  34. Shiku H, Shiraishi T, Aoyagi S, Utsumi Y, Matsudaira M, Abe H, et al. Respiration activity of single bovine embryos entrapped in a cone-shaped microwell monitored by scanning electrochemical microscopy. Analytica Chimica Acta. 2004;522:51–8.

    CAS  Google Scholar 

  35. Gardner DK, Lane M. Embryo culture systems. In: Trounson AO, Gardner DK, editors. Handbook of in vitro fertilization. 2nd ed. Boca Raton: CRC Press; 1999. p. 205–64.

    Google Scholar 

  36. Hashimoto S, Nakano T, Yamagata K, Inoue M, Morimoto Y, Nakaoka Y. Multinucleation per se is not always sufficient as a marker of abnormality to decide against transferring human embryos. Fertil Steril. 2016;106:133–9.

    PubMed  Google Scholar 

  37. Hashimoto S, Amo A, Hama S, Ito K, Nakaoka Y, Morimoto Y. Growth retardation in human blastocysts increases the incidence of abnormal spindles and decreases implantation potential after vitrification. Hum Reprod. 2013;28:1528–35.

    PubMed  Google Scholar 

  38. Furuno T, Kanno T, Arita K, Asami M, Utsumi T, Doi Y, et al. Roles of long chain fatty acids and carnitine in mitochondrial membrane permeability transition. Biochem Pharmacol. 2001;62:1037–46.

    CAS  PubMed  Google Scholar 

  39. Moraes CT, Ricci E, Petruzzella V, Shanske S, DiMauro S, Schon EA, et al. Molecular analysis of the muscle pathology associated with mitochondrial DNA deletions. Nat Genet. 1992;1:359–67.

    CAS  PubMed  Google Scholar 

  40. Esposito LA, Melov S, Panov A, Cottrell BA, Wallace DC. Mitochondrial disease in mouse results in increased oxidative stress. Proc Natl Acad Sci USA. 1999;96:4820–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Pacifici EH, McLeod LL, Sevanian A. Lipid hydroperoxide-induced peroxidation and turnover of endothelial cell phospholipids. Free Radic Biol Med. 1994;17:297–309.

    CAS  PubMed  Google Scholar 

  42. Inoue M, Sato EF, Nishikawa M, Hiramoto K, Kashiwagi A, Utsumi K. Free radical theory of apoptosis and metamorphosis. Redox Rep. 2004;9:237–47.

    CAS  PubMed  Google Scholar 

  43. Kira Y, Nishikawa M, Ochi A, Sato E, Inoue M. L-carnitine suppresses the onset of neuromuscular degeneration and increases the life span of mice with familial amyotrophic lateral sclerosis. Brain Res. 2006;1070:206–14.

    CAS  PubMed  Google Scholar 

  44. Kitano Y, Hashimoto S, Matsumoto H, Yamochi T, Yamanaka M, Nakaoka Y, et al. Oral administration of L-carnitine improves the clinical outcome of fertility in patients with IVF treatment. Gynecol Endocrinol. 2018;34:684–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. M. Inoue, G. Udayanga, A. Takeshita, and T. Yamochi for their helpful comments, Mr. T. Nakano and Ms. T. Tanaka for technical support and James Cummins, PhD, from EDANZ Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Funding

Part of this work was supported by a grant from the Japan Agency for Medical Research and Development (17gk0110014h0002 and 18gk0110014h0003 to S.H. and Y.M.), and a grant from the Japan Society for the Promotion of Science (KAKENHI 17K08144 and 20K09674 to S.H.).

Author information

Authors and Affiliations

Authors

Contributions

N.M. and S.H. designed the experiment, interpreted the results, and wrote the manuscript with help from all authors. M.Y. measured OCRs. M.S. and Y.N. were involved in the analysis of clinical data. A.F., H.S., and Y.M. supervised the project.

Corresponding author

Correspondence to Shu Hashimoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morimoto, N., Hashimoto, S., Yamanaka, M. et al. Treatment with Laevo (l)-carnitine reverses the mitochondrial function of human embryos. J Assist Reprod Genet 38, 71–78 (2021). https://doi.org/10.1007/s10815-020-01973-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-020-01973-6

Keywords

Navigation