Skip to main content
Log in

Development of Conventional Paul Model for Tensile Modulus of Polymer Carbon Nanotube Nanocomposites After Percolation Threshold by Filler Network Density

  • Advances in Surface Engineering
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this paper, Paul’s model is advanced to forecast the tensile modulus of polymer nanocomposites reinforced by carbon nanotubes (CNT) above percolation onset. The developed model assumes the CNT network density by CNT aspect ratio (α), percolation onset and CNT density (n). The experimental results from several samples containing a filler network confirm the predictability of the advanced model. However, undesirable results are reported for the samples without the filler network. Also, both α and n directly manipulate the nanocomposite’s modulus above percolation onset, because they positively influence the polymer-CNT interfacial area and network size. The reasonable effects of α, n and percolation onset on the predicted moduli of nanocomposites validate the developed Paul model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Chen, M. Sarafbidabad, Y. Zare, and K.Y. Rhee, RSC Adv. 8, 23825 (2018).

    Google Scholar 

  2. Y. Zare and K.Y. Rhee, Polymers 12, 182 (2020).

    Google Scholar 

  3. B.G. Compton, N.S. Hmeidat, R.C. Pack, M.F. Heres, and J.R. Sangoro, JOM 70, 292 (2018).

    Google Scholar 

  4. K. Tserpes, A. Chanteli, and I. Floros, Compos. Struct. 168, 657 (2017).

    Google Scholar 

  5. A. Naqi, N. Abbas, N. Zahra, A. Hussain, and S.Q. Shabbir, J. Mater. Res. Technol. 8, 1203 (2019).

    Google Scholar 

  6. A.K. Kasar, G. Xiong, and P.L. Menezes, JOM 70, 829 (2018).

    Google Scholar 

  7. M.H. Al-Saleh, H.K. Al-Anid, Y.A. Husain, H.M. El-Ghanem, and S.A. Jawad, J. Phys. D Appl. Phys. 46, 385305 (2013).

    Google Scholar 

  8. M.A. Matos, V.L. Tagarielli, P.M. Baiz-Villafranca, and S.T. Pinho, J. Mech. Phys. Solids 114, 84 (2018).

    Google Scholar 

  9. S.M. Naghib, Y. Zare, and K.Y. Rhee, Nanotechnol. Rev. 9, 53 (2020).

    Google Scholar 

  10. A.H.Z. Kalkhoran, S.M. Naghib, O. Vahidi, and M. Rahmanian, Biomed. Phys. Eng. Express 4, 055017 (2018).

    Google Scholar 

  11. R. Salahandish, A. Ghaffarinejad, E. Omidinia, H. Zargartalebi, K. Majidzadeh-A, S.M. Naghib, and A. Sanati-Nezhad, Biosens. Bioelectron. 120, 129 (2018).

    Google Scholar 

  12. A. Rostami and M.I. Moosavi, J. Appl. Polym. Sci. 137, 48520 (2019).

    Google Scholar 

  13. Y. Zare and K.Y. Rhee, J. Mech. Behav. Biomed. Mater. 96, 136 (2019).

    Google Scholar 

  14. E. Wang, M.S. Tehrani, Y. Zare, and K.Y. Rhee, Colloids Surf., A 550, 20 (2018).

    Google Scholar 

  15. Y. Zare and K.Y. Rhee, JOM 71, 3980 (2019).

    Google Scholar 

  16. S. Arora, M. Rekha, A. Gupta, and C. Srivastava, JOM 6, 1 (2018).

    Google Scholar 

  17. A. Adegbenjo, P. Olubambi, J. Westraadt, M. Lesufi, and M. Mphahlele, JOM 71, 2262 (2019).

    Google Scholar 

  18. A.M. Okoro, S.S. Lephuthing, S.R. Oke, O.E. Falodun, M.A. Awotunde, and P.A. Olubambi, JOM 71, 567 (2019).

    Google Scholar 

  19. P.S. Bharadiya, M.K. Singh, and S. Mishra, JOM 71, 838 (2019).

    Google Scholar 

  20. P. Mishra, B.R. Bhat, B. Bhattacharya, and R. Mehra, JOM 70, 1302 (2018).

    Google Scholar 

  21. J. Brown, T. Hajilounezhad, N.T. Dee, S. Kim, A.J. Hart, and M.R. Maschmann, ACS Appl. Mater. Interfaces 11, 35221 (2019).

    Google Scholar 

  22. T. Hajilounezhad, D.M. Ajiboye, and M.R. Maschmann, Materialia 7, 100371 (2019).

    Google Scholar 

  23. S. Gooneh-Farahani, S.M. Naghib, and M.R. Naimi-Jamal, Multidiscip. Cancer Investig. 3, 5 (2019).

    Google Scholar 

  24. S. Gooneh-Farahani, M.R. Naimi-Jamal, and S.M. Naghib, Expert Opin. Drug Deliv. 16, 79 (2019).

    Google Scholar 

  25. Z. Jiao, B. Zhang, C. Li, W. Kuang, J. Zhang, Y. Xiong, S. Tan, X. Cai, and L. Huang, Nanotechnol. Rev. 7, 291 (2018).

    Google Scholar 

  26. S. Das, C.K. Ghosh, C.K. Sarkar, and S. Roy, Nanotechnol. Rev. 7, 497 (2018).

    Google Scholar 

  27. W. Chen, G. Lv, W. Hu, D. Li, S. Chen, and Z. Dai, Nanotechnol. Rev. 7, 157 (2018).

    Google Scholar 

  28. K.R. Mamaghani, S.M. Naghib, A. Zahedi, M. Rahmanian, and M. Mozafari, Mater. Today Proc. 5, 15790 (2018).

    Google Scholar 

  29. Y. Zare and K.Y. Rhee, JOM 71, 3989 (2019).

    Google Scholar 

  30. R.M. Boumbimba, K. Wang, N. Bahlouli, S. Ahzi, Y. Rémond, and F. Addiego, Mech. Mater. 52, 58 (2012).

    Google Scholar 

  31. D. Cai and M. Song, Compos. Sci. Technol. 103, 44 (2014).

    Google Scholar 

  32. Y. Zare and K.Y. Rhee, J. Phys. Chem. Solids 131, 15 (2019).

    Google Scholar 

  33. Y. Zare, K.Y. Rhee, and S.J. Park, J. Biomed. Mater. Res. Part A 107, 2706 (2019).

    Google Scholar 

  34. Y. Zare, H. Garmabi, and K.Y. Rhee, Sens. Actuators A: Phys. 295, 113 (2019).

    Google Scholar 

  35. A. Farahi, G.D. Najafpour, and A. Ghoreyshi, JOM 71, 285 (2019).

    Google Scholar 

  36. Y. Zare and K.Y. Rhee, Polym. Compos. 161, 601 (2019).

    Google Scholar 

  37. Y. Zare, H. Garmabi, and K.Y. Rhee, Mater. Chem. Phys. 206, 243 (2018).

    Google Scholar 

  38. Y. Zare and K.Y. Rhee, Polymers 12, 114 (2020).

    Google Scholar 

  39. S. Maiti, S. Suin, N.K. Shrivastava, and B. Khatua, J. Appl. Polym. Sci. 130, 543 (2013).

    Google Scholar 

  40. E. Garboczi, K. Snyder, J. Douglas, and M. Thorpe, Phys. Rev. E 52, 819 (1995).

    Google Scholar 

  41. R. Goyal, S. Samant, A. Thakar, and A. Kadam, J. Phys. D Appl. Phys. 43, 365404 (2010).

    Google Scholar 

  42. Y. Zare and K.Y. Rhee, J. Mater. Res. Technol. 9, 22 (2019).

    Google Scholar 

  43. N. Jamalzadeh, S. Heidary, Y. Zare, and K.Y. Rhee, Polym. Test. 69, 1 (2018).

    Google Scholar 

  44. L. Flandin, J. Cavaillé, G. Bidan, and Y. Brechet, Polym. Compos. 21, 165 (2000).

    Google Scholar 

  45. Y. Zare and K.Y. Rhee, Compos. Part B: Eng. 155, 11 (2018).

    Google Scholar 

  46. N. Ouali, J. Cavaillé, and J. Perez, Plast. Rubber Compos. Process. Appl. 16, 55 (1991).

    Google Scholar 

  47. J. Lyngaae-Jorgensen, A. Kuta, K. Sondergaard, and K.V. Poulsen, Polym. Netw. Blends 3, 1 (1993).

    Google Scholar 

  48. C.J. Plummer, M. Rodlert, J.-L. Bucaille, H.J. Grünbauer, and J.-A.E. Månson, Polymer 46, 6543 (2005).

    Google Scholar 

  49. Y. Chen, F. Pan, Z. Guo, B. Liu, and J. Zhang, J. Mech. Phys. Solids 84, 395 (2015).

    Google Scholar 

  50. Z. Zhou, M. Sarafbidabad, Y. Zare, and K.Y. Rhee, J. Mech. Behav. Biomed. Mater. 86, 368 (2018).

    Google Scholar 

  51. Y. Zare and K.Y. Rhee, Polymers 12, 896 (2020).

    Google Scholar 

  52. B. Paul. Prediction of elastic constants of multi-phase materials. DTIC Document (1959).

  53. Y. Zare and H. Garmabi, J. Appl. Polym. Sci. 123, 2309 (2012).

    Google Scholar 

  54. N.-H. Tai, M.-K. Yeh, and T.-H. Peng, Compos. B Eng. 39, 926 (2008).

    Google Scholar 

  55. K. Saeed and S.Y. Park, J. Appl. Polym. Sci. 106, 3729 (2007).

    Google Scholar 

  56. Q. Zhang, S. Rastogi, D. Chen, D. Lippits, and P.J. Lemstra, Carbon 44, 778 (2006).

    Google Scholar 

  57. K. Prashantha, J. Soulestin, M. Lacrampe, P. Krawczak, G. Dupin, and M. Claes, Compos. Sci. Technol. 69, 1756 (2009).

    Google Scholar 

  58. M.A. Bhuiyan, R.V. Pucha, M. Karevan, and K. Kalaitzidou, Comput. Mater. Sci. 50, 2347 (2011).

    Google Scholar 

  59. A. Szymczyk, Z. Roslaniec, M. Zenker, M.C. García-Gutiérrez, J.J. Hernández, D.R. Rueda, A. Nogales, and T.A. Ezquerra Sanz, eXPRESS Polym. Lett. 5, 977 (2011).

    Google Scholar 

  60. W. Peng, S. Rhim, Y. Zare, and K.Y. Rhee, Polym. Compos. 40, 1117 (2019).

    Google Scholar 

  61. A. Khan, M.H. Shamsi, and T.-S. Choi, Comput. Mater. Sci. 45, 257 (2009).

    Google Scholar 

  62. T. Nazari and H. Garmabi, Polym. Compos. 33, 1893 (2012).

    Google Scholar 

  63. Y. Zare and K.Y. Rhee, J. Mater. Res. Technol. 9, 22 (2020).

    Google Scholar 

  64. Y. Zare and K.Y. Rhee, JOM 69, 2762 (2017).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (Project Number: 2020R1A2B5B02002203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyong Yop Rhee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, Y., Rhee, K.Y. Development of Conventional Paul Model for Tensile Modulus of Polymer Carbon Nanotube Nanocomposites After Percolation Threshold by Filler Network Density. JOM 72, 4323–4329 (2020). https://doi.org/10.1007/s11837-020-04398-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04398-9

Navigation