Skip to main content

Advertisement

Log in

Temperature and Moisture Modulate the Contribution of Soil Fauna to Litter Decomposition via Different Pathways

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Soil fauna are crucial decomposers in terrestrial ecosystems, but how the role of soil fauna varies among climatic conditions and litter substrates remains poorly understood. Here, we conducted a four-year litter decomposition experiment along an elevational gradient (453 m, 945 m, 3058 m and 3582 m) in southwestern China. Two dominant tree species with contrasting leaf traits (coniferous vs. broadleaf) were used for field incubation at each site. Litterbags with two mesh sizes (3 vs. 0.04 mm) were used to permit and exclude the presence of soil fauna. The changes in elevation caused corresponding shifts in temperature and precipitation but did not affect the abundance and diversity of soil fauna communities. Soil fauna increased annual decomposition rates (k) by 14.5–28.7% across all litter types. Our structural equation models indicated that increasing temperature reduced while increasing moisture increased soil fauna effects on decomposition. Moreover, temperature and moisture modulated the contribution of soil fauna to litter decomposition via different mechanisms: (1) the reduced soil fauna contribution was driven by the increased temperature through increasing the litter C/N and fauna density (possibly because higher densities were associated with smaller organisms) and (2) the increased soil fauna effects were driven by increased moisture that increased the diversity of soil fauna. These results demonstrate that the effects of soil fauna are sensitive to changes in climate and litter quality across elevation gradients, and environment factors (i.e., temperature and moisture) may mediate the contribution of soil fauna to litter decomposition in opposite directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Aerts R. 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–49.

    Article  Google Scholar 

  • Ayres E, Steltzer H, Berg S, Wall DH. 2009. Soil biota accelerate decomposition in high-elevation forests by specializing in the breakdown of litter produced by the plant species above them. J Ecol 97:901–12.

    Article  CAS  Google Scholar 

  • Bokhorst S, Metcalfe DB, Wardle DA. 2013. Reduction in snow depth negatively affects decomposers but impact on decomposition rates is substrate dependent. Soil Biol Biochem 62:157–64.

    Article  CAS  Google Scholar 

  • Bothwell LD, Selmants PC, Giardina CP, Litton CM. 2014. Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests. PeerJ 2:e685.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradford MA, Berg B, Maynard DS, Wieder WR, Wood SA. 2016. Understanding the dominant controls on litter decomposition. J Ecol 104:229–38.

    Article  CAS  Google Scholar 

  • Bradford MA, Tordoff GM, Eggers T, Jones TH, Newington JE. 2002. Microbiota, fauna, and mesh size interactions in litter decomposition. Oikos 99:317–23.

    Article  Google Scholar 

  • Cornwell WK, Cornelissen JH, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–71.

    Article  PubMed  Google Scholar 

  • David JF. 2014. The role of litter-feeding macroarthropods in decomposition processes: A reappraisal of common views. Soil Biol Biochem 76:109–18.

    Article  CAS  Google Scholar 

  • Frouz J. 2018. Effects of soil macro-and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma 332:161–72.

    Article  CAS  Google Scholar 

  • Fujii S, Cornelissen JH, Berg MP, Mori AS. 2018. Tree leaf and root traits mediate soil faunal contribution to litter decomposition across an elevational gradient. Funct Ecol 32:840–52.

    Article  Google Scholar 

  • Fujii S, Makita N, Mori AS, Takeda H. 2016. Plant species control and soil faunal involvement in the processes of above-and below-ground litter decomposition. Oikos 125:883–92.

    Article  Google Scholar 

  • Fujii S, Takeda H. 2012. Succession of collembolan communities during decomposition of leaf and root litter: Effects of litter type and position. Soil Biol Biochem 54:77–85.

    Article  CAS  Google Scholar 

  • García-Palacios P, Maestre FT, Kattge J, Wall DH. 2013. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecol Lett 16:1045–53.

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Palacios P, McKie BG, Handa IT, Frainer A, Hättenschwiler S. 2016. The importance of litter traits and decomposers for litter decomposition: a comparison of aquatic and terrestrial ecosystems within and across biomes. Funct Ecol 30:819–29.

    Article  Google Scholar 

  • Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ. 2000. Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biol 6:751–65.

    Article  Google Scholar 

  • González G, Seastedt TR. 2001. Soil fauna and plant litter decomposition in tropical and subalpine forests. Ecology 82:955–64.

    Article  Google Scholar 

  • Handa IT, Aerts R, Berendse F, Berg MP, Berg MP, Bruder A, Butenschoen O, Chauvet E, Gessner MO, Jabiol J, Makkonen M, McKie BG, Malmqvist B, Peeters ETHM, Scheu S, Schmid B, Ruijven JV, Vos VCA, Hättenschwiler S. 2014. Consequences of biodiversity loss for litter decomposition across biomes. Nature 509:218–21.

    Article  CAS  PubMed  Google Scholar 

  • Hättenschwiler S, Gasser P. 2005. Soil animals alter plant litter diversity effects on decomposition. P Natl Acad Sci USA 102:1519–24.

    Article  CAS  Google Scholar 

  • Hättenschwiler S, Coq S, Barantal S, Handa IT. 2011. Leaf traits and decomposition in tropical rainforests: revisiting some commonly held views and towards a new hypothesis. New Phytol 189:950–65.

    Article  PubMed  Google Scholar 

  • He W, Wu FZ, Zhang DJ, Yang WQ, Tan B, Zhao YY, Wu QQ. 2015. The effects of forest gaps on cellulose degradation in the foliar litter of two shrub species in an alpine fir forest. Plant Soil 393:109–22.

    Article  CAS  Google Scholar 

  • He W, Wu FZ, Yang WQ, Zhao YY, Wu QQ, He M. 2016. Lignin degradation in foliar litter of two shrub species from the gap center to the closed canopy in an alpine fir forest. Ecosystems 19:115–28.

    Article  CAS  Google Scholar 

  • Hobbie SE, Vitousek PM. 2000. Nutrient limitation of decomposition in Hawaiian forests. Ecology 81:1867–77.

    Article  Google Scholar 

  • Huhta V. 2007. The role of soil fauna in ecosystems: A historical review. Pedobiologia 50:489–95.

    Article  Google Scholar 

  • Joly F-X, Coq S, Coulis M, Nahmani J, Hättenschwiler S. 2018. Litter conversion into detritivore faeces reshuffles the quality control over C and N dynamics during decomposition. Funct Ecol 32:2605–14.

    Article  Google Scholar 

  • Kampichler C, Bruckner A. 2009. The role of microarthropods in terrestrial decomposition: A meta-analysis of 40 years of litterbag studies. Biol Rev 84:375–89.

    Article  PubMed  Google Scholar 

  • Keiser AD, Keiser DA, Strickland MS, Bradford MA. 2014. Disentangling the mechanisms underlying functional differences among decomposer communities. J Ecol 102:603–9.

    Article  Google Scholar 

  • Liao S, Ni XY, Yang WQ, Li H, Wang B, Fu CK, Xu ZF, Tan B, Wu FZ. 2016. Water, rather than temperature, dominantly impacts how soil fauna affect dissolved carbon and nitrogen release from fresh litter during early litter decomposition. Forests 7:249.

    Article  Google Scholar 

  • Lu RK. 1999. Soil and agro-chemical analytical methods. Beijing: China Agricultural Science and Technology Press.

    Google Scholar 

  • Makkonen M, Berg MP, Handa IT, Hättenschwiler S, Ruijven JV, Bodegom PMV, Aerts R. 2012. Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient. Ecol Lett 15:1033–41.

    Article  PubMed  Google Scholar 

  • Marian F, Sandmann D, Krashevska V, Maraun M, Scheu S. 2018. Altitude and decomposition stage rather than litter origin structure soil microarthropod communities in tropical montane rainforests. Soil Biol Biochem 125:263–74.

    Article  CAS  Google Scholar 

  • Meyer WMIII, Ostertag R, Cowie RH. 2011. Macro-invertebrates accelerate litter decomposition and nutrient release in a Hawaiian rainforest. Soil Biol Biochem 43:206–11.

    Article  CAS  Google Scholar 

  • Milcu A, Manning P. 2011. All size classes of soil fauna and litter quality control the acceleration of litter decay in its home environment. Oikos 120:1366–70.

    Article  Google Scholar 

  • Moreira FMS, Huising EJ, Bignell DE. 2008. A Handbook of tropical soil biology: Sampling and characterization of below-ground biodiversity. London: Earthscan.

    Google Scholar 

  • Murphy KL, Klopatek JM, Klopatek CC. 1998. The effects of litter quality and climate on decomposition along an elevational gradient. Ecol Appl 8:1061–71.

    Article  Google Scholar 

  • Ni XY, Berg B, Yang WQ, Li H, Liao S, Tan B, Yue K, Xu ZF, Zhang L, Wu FZ. 2018. Formation of forest gaps accelerates C, N and P release from foliar litter during 4 years of decomposition in an alpine forest. Biogeochemistry 139:321–35.

    Article  CAS  Google Scholar 

  • Olson JS. 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–31.

    Article  Google Scholar 

  • Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B. 2007. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315:361–4.

    Article  CAS  PubMed  Google Scholar 

  • Powers JS, Montgomery RA, Adair EC, Brearley FQ, DeWalt SJ, Castanho CT, Chave J, Deinert E, Ganzhorn JU, Gilbert ME, Gonzíez-Iturbe JA, Bunyavejchewin S, Grau HR, Harms KE, Hiremath A, Iriarte-Vivar S, Manzane E, de Oliveira AA, Poorter L, Ramanamanjato JB, Salk C, Varela A, Weiblen GD, Lerdau MT. 2009. Decomposition in tropical forests: a pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. J Ecol 97:801–11.

    Article  CAS  Google Scholar 

  • Perez G, Aubert M, Decaëns T, Trap J, Chauvat M. 2013. Home-field advantage: a matter of interaction between litter biochemistry and decomposer biota. Soil Biol Biochem 67:245–54.

    Article  CAS  Google Scholar 

  • Salinas N, Malhi Y, Meir P, Silman M, Roman Cuesta R, Huaman J, Salinas D, Huaman V, Gibaja A, Mamani M, Farfan F. 2011. The sensitivity of tropical leaf litter decomposition to temperature: results from a large-scale leaf translocation experiment along an elevation gradient in Peruvian forests. New Phytol 189:967–77.

    Article  CAS  PubMed  Google Scholar 

  • Sauvadet M, Chauvat M, Brunet N, Bertrand I. 2017. Can changes in litter quality drive soil fauna structure and functions? Soil Biol Biochem 107:94–103.

    Article  CAS  Google Scholar 

  • Seastedt TR. 1984. The role of microarthropods in decomposition and mineralization processes. Annu Rev Entomol 29:25–46.

    Article  Google Scholar 

  • Strickland MS, Osburn E, Lauber C, Fierer N, Bradford MA. 2009. Litter quality is in the eye of the beholder: Initial decomposition rates as a function of inoculum characteristics. Funct Ecol 23:627–36.

    Article  Google Scholar 

  • Tan B, Wu FZ, Yang WQ, Yu S, Liu L, Wang A, Yang YL. 2013. Seasonal dynamics of soil fauna in the subalpine and alpine forests of west Sichuan at different altitudes. Acta Ecol Sin 33:12–22.

    Article  Google Scholar 

  • Tan B, Yin R, Yang WQ, Zhang J, Xu ZF, Liu Y, He SQ, Zhou W, Zhang L, Li H, Wang LZ, Liu SN, You CM. 2020. Soil fauna show different degradation patterns of lignin and cellulose along an elevational gradient. Appl Soil Ecol 155:103673.

    Article  Google Scholar 

  • Tan Y, Yang WQ, Ni XY, Tan B, Yue K, Cao R, Liao S, Wu FZ. 2019. Soil fauna affects the optical properties in alkaline solutions extracted (humic acid-like) from forest litters during different phenological periods. Can J Soil Sci 99:195–207.

    Article  CAS  Google Scholar 

  • Wall DH, Bradford MA, St John MG, Trofymow JA, Behan-Pelletier V, Bignell DE, Dangerfield JM, Parton WJ, Rusek J, Voigt W, Wolters V, Gardel HZ, Ayuke FO, Bashford R, Beljakova OI, Bohlen PJ, Brauman A, Flemming S, Henschel JR, Johnson DL, Jones TH, Kovarova M, Kranabetter JM, Kutny L, Lin KC, Maryati M, Masse D, Pokarzhevskii A, Rahman H, Sabara MG, Salamom JG, Swift MJ, Varela A, Vasconcelos HL, White D, Zou XM. 2008. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Global Change Biol 14:2661–77.

    Article  Google Scholar 

  • Wang SJ, Ruan HH, Wang B. 2009. Effects of soil microarthropods on plant litter decomposition across an elevation gradient in the Wuyi Mountains. Soil Biol Biochem 41:891–7.

    Article  CAS  Google Scholar 

  • Wang WQ, Sardans J, Zeng CS, Tong C, Wang C, Peñuelas J. 2016. Impact of plant invasion and increasing floods on total soil phosphorus and its fractions in the Minjiang river estuarine wetlands, China. Wetlands 36:21–36.

    Article  CAS  Google Scholar 

  • Whittaker RH. 1972. Evolution and measurement of species diversity. Taxon 21:213–51.

    Article  Google Scholar 

  • Yang XD, Chen J. 2009. Plant litter quality influences the contribution of soil fauna to litter decomposition in humid tropical forest, southwestern China. Soil Biol Biochem 41:910–18.

    Article  CAS  Google Scholar 

  • Yin R, Eisenhauer N, Auge H, Purahong W, Schmidt A, Schädler M. 2019. Additive effects of experimental climate change and land use on faunal contribution to litter decomposition. Soil Biol Biochem 131:141–8.

    Article  CAS  Google Scholar 

  • Yin R, Siebert J, Eisenhauer N, Schädler M. 2020. Climate change and intensive land use reduce soil animal biomass through dissimilar pathways. eLife 9:e54749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin WY, Hu SH, Ning YZ. 1998. Pictorial Keys to Soil Animals of China. Beijing: Science Press.

    Google Scholar 

  • You CM, Wu FZ, Yang WQ, Xu ZF, Tan B, Zhang L, Yue K, Ni XY, Li H, Chang CH, Fu CK. 2018. Does foliar nutrient resorption regulate the coupled relationship between nitrogen and phosphorus in plant leaves in response to nitrogen deposition? Sci Total Environ 645:733–42.

    Article  CAS  PubMed  Google Scholar 

  • Yue K, Peng Y, Fornara DA, Van Meerbeek K, Vesterdal L, Yang WQ, Peng CH, Tan B, Zhou W, Xu ZF, Ni XY, Zhang L, Wu FZ, Svenning JC. 2019. Responses of nitrogen concentrations and pools to multiple environmental change drivers: A meta-analysis across terrestrial ecosystems. Global Ecol Biogeogr 28:690–724.

    Article  Google Scholar 

  • Zhang DQ, Hui DF, Luo YQ, Zhou GY. 2008. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93.

    Article  Google Scholar 

  • Zhang Y, Zhang DJ, Li X, Zhang J. 2019. Contribution of soil fauna to the degradation of recalcitrant components in Cinnamomum camphora foliar litter in different-sized gaps in Pinus massoniana plantations. J Forestry Res 30:931–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (31870602, 31700542 31570601 and 31500509), the National Key R&D Program of China (2017YFC0503906), the Special Fund for Key Program of Science and Technology of Sichuan Province (2018SZDZX0030), the Program of Sichuan Excellent Youth Sci-Tech Foundation (2020JDJQ0052) and the Chinese Postdoctoral Science Foundation (2020M673278).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Tan.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2307 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, B., Yin, R., Zhang, J. et al. Temperature and Moisture Modulate the Contribution of Soil Fauna to Litter Decomposition via Different Pathways. Ecosystems 24, 1142–1156 (2021). https://doi.org/10.1007/s10021-020-00573-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-020-00573-w

Keywords

Navigation