Skip to main content
Log in

Understanding the bias in surface latent and sensible heat fluxes in contemporary AGCMs over tropical oceans

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The performance of 20 models participating in the atmospheric model intercomparison project (AMIP) is evaluated concerning surface latent (QLH) and sensible (QSH) heat flux over the tropical oceans (30°S–30°N). Biases were calculated by comparing model fluxes to observations from moored buoys and the objectively analyzed air–sea fluxes (OAFlux) database. All 20 AMIP models overestimate QLH with an ensemble mean bias of 20 W m−2, and 18 of the 20 models overestimate QSH with an ensemble mean bias of 5 W m−2 when compared to OAFlux, implying a systematic positive bias over the tropical oceans. A comparison with buoy observations also showed similar biases. To obtain insights into the causes behind model bias, we quantified the contribution from near-surface winds, specific humidity, and temperatures. It is found that near-surface humidity contributes more to the bias in QLH than wind speed, while air temperature contributes more to bias in QSH than wind speed. On the other hand, the root mean squared error (RMSE) in QLH has contributions from both near-surface humidity and wind. The contribution from humidity to the mean bias in QLH is 13 W m−2, with RMSE of 15 W m−2, suggesting a systematic overestimation of sea-air humidity difference in models. The model ensemble, in general, simulates QLH and QSH better than individual models. Models with higher horizontal and vertical resolutions perform better than coarse resolution models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aligo EA, Gallus WA, Segal M (2009) On the impact of WRF model vertical grid resolution on midwest summer rainfall forecasts. Wea Forecast 24:575–594

    Google Scholar 

  • Andersson A, Fennig K, Klepp C, Bakan S, Grassi H, Schulz J (2010) The Hamburg ocean atmosphere parameters and fluxes from satellite data—HOAPS-3. Earth Syst Sci Data 2:215–234

    Google Scholar 

  • Bentamy A, Grodsky SA, Katsaros K, Mestas-Nunez AM, Blanke B, Desbiolles F (2013) Improvement in air–sea flux estimates derived from satellite observations. Int J Remote Sens 34(14):5243–5526

    Google Scholar 

  • Bhat GS, Fernando HJS (2016) Remotely driven anomalous sea–air heat flux over the north Indian Ocean during the summer monsoon season. Oceanography 29(2):232–241

    Google Scholar 

  • Bi D, Dix M, Marsland S, O’Farrel S, Rashid H, Uotila P, Hirst T, Kowalczyk E, Golebiewski M, Sullivan A, Yan H, Hannah N, Sun CFZ, Vohralik P, Watterson I, Zhou X, Fiedler R, Collier M, Ma Y, Noonan J, Stevens L, Uhe P, Zhu H, Griffies S, Hill R, Harris C, Puri K (2013) The ACCESS coupled model: description, control climate and evaluation. Aust Meteorol Oceanogr J 63:41–64

    Google Scholar 

  • Blanc TV (1985) Variation of bulk-derived surface flux, stability, and roughness results due to the use of different transfer coefficient schemes. J Phys Oceanogr 15:650–669

    Google Scholar 

  • Blanc TV (1987) Accuracy of bulk-method-determined flux, stability, and sea surface roughness. J Geophys Res 92:3867–3876

    Google Scholar 

  • Bourles B, Lumpkin R, Mcphaden M, Hernandez F, Nobre P, Campos E, Yu L, Planton S, Busalacchi A, Moura A, Servain J, Trotte J (2008) The PIRATA program: history, accomplishments, and future directions. Bull Amer Meteor Soc 89:1111–1125

    Google Scholar 

  • Brownlee J, Ray P, Tewari M, Tan H (2017) Relative role of turbulent and radiative flux on the near-surface temperatures in a single-layer urban canopy model over Houston. J Appl Meteorol Climatol 56:2173–2187

    Google Scholar 

  • Bryan FO, Tomas R, Dennis JM, Chelton DB, Loeb NG, McClean JL (2010) Frontal scale air–sea interaction in high-resolution coupled climate models. J Clim 23(23):6277–6291

    Google Scholar 

  • Cao N, Ren B, Zheng JQ (2015) Evaluation of CMIP5 climate models in simulating 1979–2005 oceanic latent heat flux over the Pacific. J Adv Atmos Sci 32(12):1603–1616

    Google Scholar 

  • Clayson CA, Bogdanoff AS (2013) The effect of diurnal sea surface temperature warming on climatological air–sea fluxes. J Clim 26:2546–2556

    Google Scholar 

  • Cronin MF, Kessler WS (2002) Seasonal and interannual modulation of mixed layer variability at 0, 110W. Deep Sea Res Part I 49:1–17

    Google Scholar 

  • Cronin MF, McPhaden MJ (1997) The upper ocean heat balance in the western equatorial Pacific warm pool during September–December 1992. J Geophys Res 102(C4):8533–8553

    Google Scholar 

  • Cronin MF, Fairall CW, McPhaden MJ (2006) An assessment of buoy-derived and numerical weather prediction surface heat fluxes in the tropical Pacific. J Geophys Res 111:C0603

    Google Scholar 

  • Dawe JT, Thompson L (2006) Effect of ocean surface currents on wind stress, heat flux, and wind power input to the ocean. Geophys Res Lett 33:L09604

    Google Scholar 

  • de Szoeke SP, Edson JB, Marion JR, Fairall CW, Bariteau L (2015) The MJO and air–sea interaction in TOGA COARE and DYNAMO. J Clim 28:597–622

    Google Scholar 

  • Demory ME, Vidale PL, Roberts MJ, Berrisford P, Strachan J, Schiemann R, Mizielinski MS (2014) The role of horizontal resolution in simulating drivers of the global hydrological cycle. Clim Dyn 42(7–8):2201–2225

    Google Scholar 

  • Dufresne JL, Foujols MA, Denvil S, Caubel A, Marti O, Aumont O, Balkanski Y, Bekki S, Bellenger H, Benshila R, Bony S, Bopp L, Braconnot P, Brockmann P, Cadule P, Cheruy F, Codron F, Cozic A, Cugnet D, de Noblet N, Duvel JP, Ethé C, Fairhead L, Fichefet T, Flavoni S, Friedlingstein P, Grandpeix JY, Guez L, Guilyardi E, Hauglustaine D, Hourdin F, Idelkadi A, Ghattas J, Joussaume S, Kageyama M, Krinner G, Labetoulle S, Lahellec A, Lefebvre MP, Lefevre F, Levy C, Li ZX, Lloyd J, Lott F, Madec G, Mancip M, Marchand M, Masson S, Meurdesoif Y, Mignot J, Musat I, Parouty S, Polcher J, Rio C, Schulz M, Swingedouw D, Szopa S, Talandier C, Terray P, Viovy N, Vuichard N (2013) Climate change projections using the IPSLCM5 earth system model: from CMIP3 to CMIP5. Clim Dyn 40(9–10):2123–2165

    Google Scholar 

  • Enfield DB (1986) Zonal and seasonal variation of the sea air-surface heat balance of the equatorial Pacific Ocean. J Phys Oceanogr 16:1038–1054

    Google Scholar 

  • Fairall CW, Bradley EF, Godfrey GA, Wick GA, Edson JB, Young GS (1996a) Cool-skin and warm-layer effects on sea surface temperature. J Geophys Res 101(C1):1295–1308

    Google Scholar 

  • Fairall AW, Bradley EF, Rogers DP, Edson JB, Young GS (1996b) Bulk parameterization of the air–sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment. J Geophys Res 101(C2):3747–3764

    Google Scholar 

  • Fasullo JT, Trenberth KE (2008) The annual cycle of the energy budget. Part II: meridional structures and poleward transports. Bull Am Meteorol Soc 21:2313–2325

    Google Scholar 

  • Feng X, Haines K, de Boisséson E (2017) Coupling of surface air and sea surface temperatures in the CERA-20C reanalysis. Quart J Roy Meteorol Soc 144:195–207

    Google Scholar 

  • Fiorino M (2000) AMIP II sea surface temperature and sea ice concentration observations. https://pcmdi.llnl.gov/mips/amip/amip2/

  • Găinuşă-Bogdan A, Hourdin F, Khadre Traore A, Braconnot P (2018) Omens of coupled model biases in the CMIP5 AMIP simulations. Clim Dyn 51:2927–2941

    Google Scholar 

  • Gao S, Chiu LS, Shie CL (2013) Trends and variations of ocean surface latent heat flux: results from GSSTF2c data set. Geophys Res Lett 40:380–385

    Google Scholar 

  • Gao Y, Hsu PC, Hsu HH (2016) Assessments of surface latent heat flux associated with the Madden–Julian oscillation in reanalyses. Clim Dyn 47:1755–1774

    Google Scholar 

  • Garratt JR (1994) Review: the atmospheric boundary layer. Earth-Sci Rev 37:89–134

    Google Scholar 

  • Gates WL (1992) AMIP: the atmospheric model intercomparison project. Bull Am Meteorol Soc 73:1962–1970

    Google Scholar 

  • Gates WL (1999) An overview of the results of the atmospheric model intercomparison project (AMIP 1). Bull Am Meteorol Soc 80(1):29–56

    Google Scholar 

  • Gill AE (1982) Atmosphere-ocean dynamics. Academic Press, New York, p 662

    Google Scholar 

  • Giorgetta M, Jungclaus J, Reick C, Legutke S, Bader J, Böttinger M, Brovkin V, Crueger T, Esch M, Fieg K, Glushak K, Gayler V, Haak H, Hollweg HD, Ilyina T, Kinne S, Kornblueh L, Matei D, Mauritsen T, Mikolajewicz U, Mueller W, Notz D, Pithan F, Raddatz T, Rast S, Redler R, Roeckner E, Schmidt H, Schnur R, Segschneider J, Six K, Stockhause M, Timmreck C, Wegner J, Widmann H, Wieners KH, Claussen M, Marotzke J, Stevens B (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the coupled model intercomparison project phase 5. J Adv Model Earth Syst 5:572–597

    Google Scholar 

  • Gleckler P (1996) atmospheric model intercomparison project newsletter. No. 8, pcmdi/llnl

  • Guilyardi E, Braconnot P, Jin FF, Kim ST, Kolasinski M, Li T, Musat I (2009) Atmosphere feedbacks during ENSO in a coupled GCM with a modified atmospheric convection scheme. J Clim 22:5698–5718

    Google Scholar 

  • Hurrell J, Hack J, Shea D, Caron J, Rosinski J (2008) A new sea surface temperature and sea ice boundary dataset for the community atmosphere model. J Clim 21:5145–5153

    Google Scholar 

  • Hyder P, Edwards J, Allan RP, Hewitt HT, Bracegirdle TJ, Gergory JM, Wood RA, Meijers AJS, Mulcahy J, Field P, Furtado K, Bodas-Salcedo A, Williams KD, Copsey D, Josey SA, Liu C, Roberts CD, Sanchez C, Ridley J, Thorpe L, Hardiman SC, Mayer M, Berry DI, Belcher SE (2018) Critical southern ocean climate model biases traced to atmospheric model cloud errors. Nat Commun 9:3625

    Google Scholar 

  • Ingleby B (2010) Factors affecting ship and buoy data quality: a data assimilation perspective. J Atmos Ocean Technol 27:1476–1489

    Google Scholar 

  • Jeffrey SJ, Rotstayn LD, Collier MA, Dravitzki SM, Hamalainen C, Moeseneder C, Wong KK, Syktus JI (2013) Australia’s CMIP5 submission using the CSIRO Mk3.6 model. Aust Meteorol Oceanogr J 63:1–13

    Google Scholar 

  • Ji D, Wang L, Feng J, Wu Q, Cheng H, Zhang Q, Yang J, Dong W, Dai Y, Gong D, Zhang RH, Wang X, Liu J, Moore JC, Chen D, Zhou M (2014) Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1. Geosci Model Dev 7(5):2039–2064

    Google Scholar 

  • Jiang CL, Cronin MF, Kelly KA, Thompson L (2005) Evaluation of a hybrid satellite- and NWP-based turbulent heat flux product using tropical atmosphere-ocean (TAO) buoys. J Geophys Res 110. https://doi.org/10.1029/2004JC002824

  • Jiang C, Thompson L, Kelly KA (2008) Equatorial influence of QuikSCAT winds in an isopycnal ocean model compared to NCEP2 winds. Ocean Model 24:65–71

    Google Scholar 

  • Jin X, Yu L (2013) Assessing high-resolution analysis of surface heat fluxes in the Gulf Stream region. J Geophys Res 118:5353–5375

    Google Scholar 

  • Jo YH, Yan XH, Pan JY, Liu WT, He MX (2004) Sensible and latent heat flux in the tropical Pacific from satellite multi-sensor data. Remote Sens Environ 90:166–177

    Google Scholar 

  • Kamranzad B, Nobuhito M (2019) Future wind and wave climate projections in the Indian Ocean based on a super-high-resolution MRI-AGCM3.2S model projection. Clim Dyn 53(3–4):2391–2410

    Google Scholar 

  • Kay JE, Deser C, Phillips A, Mai A, Hannay C, Strand G, Arblaster JM, Bates SC, Danabasoglu G, Edwards J, Holland M, Kushner P, Lamarque JF, Lawrence D, Lindsay K, Middleton A, Munoz E, Neale R, Oleson K, Polvani L, Vertenstein M (2015) The community earth system model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull Am Meteorol Soc 96(8):1333–1349

    Google Scholar 

  • Kelly KA, Dickinson S, McPhaden MJ, Johnson GC (2001) Ocean currents evident in satellite wind data. Geophys Res Lett 28(12):2469–2472

    Google Scholar 

  • Kelly KA, Dickinson S, Johnson GC (2005) Scatterometer winds at TAO buoys reveal time-varying surface currents for the Tropical Pacific Ocean. J Atmos Oceanic Technol 22:735–745

    Google Scholar 

  • Kessler WS, McPhaden MJ (1995) Oceanic equatorial waves and the 1991–93 El Niño. J Clim 8:1757–1774

    Google Scholar 

  • Lake BJ, Noor SM, Freitag HP, McPhaden MJ (2003) Calibration procedures and instrumental accuracy estimates of ATLAS air temperature and relative humidity measurements. NOAA Tech. Memo. OAR PMEL-123, NOAA/Pacific Marine Environmental Laboratory, Seattle, WA, pp. 23

  • Lau KM, Kim JH, Sud Y (2009) Intercomparison of hydrologic processes in AMIP GCMs. Bull Am Meteorol Soc 77(10):2209–2227

    Google Scholar 

  • Lee E, Lee E, Choi I (2019) Impact of increased vertical resolution on medium-range forecasts in a global atmospheric model. Mon Weather Rev 147:4091–4106

    Google Scholar 

  • Lin JL (2007) The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J Clim 20:4497–4525

    Google Scholar 

  • Liu HL, Lin WY, Zhang MH (2010) Heat budget of the upper ocean in the south-central equatorial Pacific. Bull Am Meteorol Soc 23:1779–1792

    Google Scholar 

  • Martin T, Bellouin N, Collins W, Culverwell I, Halloran P, Hardiman S, Hinton T, Jones C, McDonald R, McLaren A, O'Connor F, Roberts M, Rodriguez J, Woodward S, Best M, Brooks M, Brown A, Butchart N, Dearde C, Wiltshire A (2011) The HadGEM2 family of met office unified model climate configurations. Geosci Model Dev 4:723–757

    Google Scholar 

  • McNeely S et al (2012) Catalyzing frontiers in water-climate-society research: a view from early career scientists and junior faculty. Bull Am Meteorol Soc 93:477–484. https://doi.org/10.1175/BAMS-D-11-00221.1

    Article  Google Scholar 

  • McPhaden MJ (1995) the tropical atmosphere ocean (TAO) array is completed. Bull Am Meteorol Soc 76(5):739–741

    Google Scholar 

  • McPhaden M, Meyers JG, Ando K, Masumoto Y, Murty VSN, Ravichandran M, Syamsudin F, Vialard J, Yu L, Yu W (2009) RAMA: the research moored array for African–Asian–Australian monsoon analysis and prediction. Bull Am Meteorol Soc 90:459–480

    Google Scholar 

  • Mitovski T, Cole J, Norman M, von Salzen K, Zhang G (2018) Convective response to large-scale forcing in the tropical western Pacific simulated by spCAM5 and CanAM4.3. Geosci Model Dev Discuss 12:2107–2117

    Google Scholar 

  • Oberhuber JM (1988) An atlas based on the ‘‘COADS’’ data set: the budget of heat, buoyancy and turbulent kinetic energy at the surface of the global ocean. Max-Planck Inst Meteorol Rep 15:20

    Google Scholar 

  • Payne RE, Huang K, Weller RA, Freitag HP, Cronin MF, McPhaden MJ, Meinig C, Kuroda Y, Ushijima N, Reynolds RM (2002) A comparison of buoy meteorological systems. WHOI Technical Report WHOI-2002-10. Woods Hole Oceanographic Institution pp 67

  • Pielke RS, Wolter K, Bliss O, Doesken N, McNoldy B (2007) The July 2005 Denver heat wave: how unusual was it? Natl Weather Dig 31:1

    Google Scholar 

  • Pinker RT, Bentamy A, Katsaros KB, Ma Y, Li C (2014) Estimates of net heat fluxes over the Atlantic Ocean. J Geophys Res 119:410–427

    Google Scholar 

  • Planton S, Deque M, Bellevaux C (1991) Validation of an annual cycle simulation with a T42–L20 GCM. Clim Dyn 5:189–200

    Google Scholar 

  • Pokhrel S, Dutta U, Rahaman H, Chaudhari H, Hazra A, Saha SK, Veeranjaneyulu C (2020) Evaluation of different heat flux products over the tropical Indian Ocean. Earth Space Sci 7: e2019EA000988

  • Praveen Kumar B, Vialard J, Lengaigne M, Murty VSN, McPhaden MJ (2012) TropFlux: air–sea fluxes for the global tropical oceans-description and evaluation. Clim Dyn 38:1521–1543

    Google Scholar 

  • Rahaman H, Ravichandran M (2013) Evaluation of near-surface air temperature and specific humidity from hybrid global products and their impact on latent heat flux in the North Indian Ocean. J Geophys Res Ocean 118:1034–1047

    Google Scholar 

  • Raj Parampil S, Bharathraj G, Harrison M, Sengupta D (2016) Observed subseasonal variability of heat flux and the SST response of the tropical Indian Ocean. J Geophys Res Oceans 121(10):7290–7307

    Google Scholar 

  • Ray P, Zhang C, Dudhia J, Li T, Moncrieff MW (2012) Tropical channel model. In: Druyan LM (ed) Climate models. InTech, London, pp 3–18 (ISBN: 978-953-308-181-6)

    Google Scholar 

  • Rind D, Schmidt GA, Jonas J, Miller RL, Nazarenko L, Kelley M, Romanski J (2018) Multi-century instability of the Atlantic meridional circulation in rapid warming simulations with GISS ModelE2. J Geophys Res Atmos 123(12):6331–6355

    Google Scholar 

  • Scoccimarro E, Gualdi S, Bellucci A, Sanna A, Fogli PG, Manzini E, Vichi M, Oddo P, Navarra A (2011) Effects of tropical cyclones on ocean heat transport in a high resolution coupled general circulation model. J Clim 24:4368–4384

    Google Scholar 

  • Sengupta D, Ray P, Bhat GS (2002) Spring warming of the eastern Arabian Sea and Bay of Bengal from buoy data. Geophys Res Lett 29(15):1–24

    Google Scholar 

  • Shimura T, Mori N, Mase H (2015) Future projections of extreme ocean wave climates and the relation to tropical cyclones: ensemble experiments of MRI-AGCM3.2H. J Clim 28:9838–9856

    Google Scholar 

  • Small RJ, Bacmeister J, Bailey D, Baker A, Bishop S, Bryan F, Caron J, Dennis J, Gent P, Hsu HM, Jochum M, Lawrence D, Munoz E, diNezio P, Scheitlin T, Tomas R, Tribbia J, Tseng YH, Vertenstein M (2014) A new synoptic-scale resolving global climate simulation using the community earth system model. J Adv Model Earth Syst 6:1065–1094

    Google Scholar 

  • Soloviev A, Lukas R (1997) Observation of large diurnal warming events in the near-surface layer of the western equatorial Pacific warm pool. Deep Sea Res Part I 44:1055–1076

    Google Scholar 

  • Stevenson JW, Niiler PP (1983) Upper ocean heat budget during the Hawaii-to-Tahiti shuttle experiment. J Phys Oceanogr 13:1894–1907

    Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498

    Google Scholar 

  • Tost H, Jöckel P, Lelieveld J (2006) Influence of different convection parameterisations in a GCM. Atmos Chem Phys 6:5475–5493

    Google Scholar 

  • Trenberth KE, Caron JM, Stepaniak DP (2001) The atmospheric energy budget and implications for surface fluxes and ocean heat transports. Clim Dyn 17:259–276

    Google Scholar 

  • Valdivieso M, Haines K, Balmaseda M, Chang YS, Drevillon M, Ferry N, Fujii Y, Köhl A, Storto A, Toyoda T, Wang X, Waters J, Xue Y, Yin Y, Barnier B, Hernandez F, Kumar A, Lee T, Masina S, Andrew PK (2017) An assessment of air–sea heat fluxes from ocean and coupled reanalyses. Clim Dyn 49(3):983–1008

    Google Scholar 

  • Vannière B, Demory ME, Vidale PL, Schiemann R, Roberts MJ, Roberts CD, Matsueda M, Terray L, Koenigk T, Senan R (2018) Multi-model evaluation of the sensitivity of the global energy budget and hydrological cycle to resolution. Clim Dyn 52:6817–6846

    Google Scholar 

  • Voldoire A, Sanchez-Gomez E, Mélia DS, Decharme B, Cassou C, Sénési S, Valcke S, Beau I, Alias A, Chevallier M, Déqué M, Deshayes J, Douville H, Fernandez E, Madec G, Maisonnave E, Moine MP, Planton S, Saint-Martin D, Szopa S, Tyteca S, Alkama R, Belamari S, Braun A, Coquart L, Chauvin F (2013) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn 40(9):2091–2121

    Google Scholar 

  • Volodin EM, Dianskii NA, Gusev AV (2010) Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izv Atmos Ocean Phys 46(4):414–431

    Google Scholar 

  • Watanabe M, Suzuki T, Oishi R, Komuro Y, Watanabe S, Emori S, Takemura T, Chikira M, Ogura T, Sekiguchi M, Takata K, Yamazaki D, Yokohata T, Nozawa T, Hasumi H, Tatebe H, Kimoto M (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23(23):6312–6335

    Google Scholar 

  • Weare BC (1989) Uncertainties in estimates of surface heat flux derived from marine reports over the tropical and subtropical oceans. Tellus Ser A Dyn Meteorol Oceanogr 41:357–370

    Google Scholar 

  • Weihs R, Bourassa M (2014) Modeled diurnally varying sea surface temperatures and their influence on surface heat fluxes. J Geophys Res Oceans 119. https://doi.org/10.1002/2013JC009489

  • Weingartner TJ, Weisberg RH (1991a) On the annual cycle of equatorial upwelling in the central Atlantic Ocean. J Phys Oceanogr 21:68–82

    Google Scholar 

  • Weingartner TJ, Weisberg RH (1991b) A description of the annual cycle in sea surface temperature and upper ocean heat in the equatorial Atlantic. J Phys Oceanogr 21:83–96

    Google Scholar 

  • Wyrtki K (1981) An estimate of equatorial upwelling in the pacific. J Phys Oceanogr 11:1205–1214

    Google Scholar 

  • Yang J, Joyce TM (2006) Local and equatorial forcing of seasonal variations of the North Equatorial Countercurrent in the Atlantic Ocean. J Phys Oceanogr 36:238–254

    Google Scholar 

  • Yu L (2007) Global variations in oceanic evaporation (1958–2005): the role of the changing wind speed. J Clim 20:5376–5390

    Google Scholar 

  • Yu LS, Weller RA (2007) Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull Am Meteorol Soc 88(4):527–539

    Google Scholar 

  • Yu L, Weller RA, Sun B (2004a) Improving latent and sensible heat flux estimates for the Atlantic Ocean (1988–99) by a synthesis approach. J Clim 17:373–393

    Google Scholar 

  • Yu L, Weller RA, Sun B (2004b) Mean and variability of the WHOI daily latent and sensible heat fluxes at in situ flux measurement sites in the Atlantic Ocean. J Clim 17:2096–2118

    Google Scholar 

  • Yu L, Jin X, Weller RA (2007) Annual, seasonal, and interannual variability of air–sea heat fluxes in the Indian Ocean. J Clim 20:3190–3209

    Google Scholar 

  • Yu LS, Jin XZ, Weller RA (2008) Multidecade global flux datasets from the objectively analyzed air–sea fluxes (OAFlux) project: latent and sensible heat fluxes ocean evaporation, and related surface metrological variables. Woods Hole Oceanographic Institution, pp 5

  • Yukimoto S, Adachi Y, Hosaka M, Sakami T, Yoshimura H, Hirabara M, Tanaka TY, Shindo E, Tsujino H, Delushi M, Mizuta R, Yabu S, Obata A, Nakano H, Koshiro T, Ose T, Kitch A (2012) A new global climate model of the Meteorological Research Institute: MRI-CGCM3 model description and basic performance. J Meteorol Soc Jpn 90A:2364

    Google Scholar 

  • Zhang XB, McPhaden MJ (2010) Surface layer heat balance in the eastern equatorial Pacific Ocean on interannual time scales: influence of local versus remote wind forcing. Bull Am Meteorol Soc 23:4375–4394

    Google Scholar 

  • Zhang RW, Wang X, Wang CZ (2018) On the simulations of global oceanic latent heat flux in the CMIP5 multimodel ensemble. J Clim 31(17):7111–7128

    Google Scholar 

  • Zhao M, Held IM, Vecchi GA (2010) Retrospective forecast of the hurricane season using a global atmospheric model assuming persistence of SST anomalies. Mon Weather Rev 138:3858–3868

    Google Scholar 

  • Zhou X, Ray P, Boykin K, Barrett B, Hsu P-C (2019) Evaluation of surface radiative fluxes over the tropical oceans in AMIP simulations. Atmosphere 10(10):606

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by Grants from ONR: N00014-1601-3091 to PR and N0001416WX01752 to BB. The authors express their gratitude for the surface heat flux reanalysis data provided by WHOI OAFlux project (https://oaflux.whoi.edu). We acknowledge the support of NOAA in helping maintain and provide mooring buoy data. We thank the climate modeling groups (listed in Table 1 of this paper) for their participation and cooperation. Finally, the authors are grateful to the five anonymous reviewers for their helpful comments and suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pallav Ray.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Ray, P., Barrett, B.S. et al. Understanding the bias in surface latent and sensible heat fluxes in contemporary AGCMs over tropical oceans. Clim Dyn 55, 2957–2978 (2020). https://doi.org/10.1007/s00382-020-05431-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-020-05431-y

Keywords

Navigation