Skip to main content

Advertisement

Log in

Ubiquitin-specific protease 2a promotes hepatocellular carcinoma progression via deubiquitination and stabilization of RAB1A

  • Original paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Deubiquitination, the inverse process of ubiquitination, is catalyzed by deubiquitinases (DUBs) that remove ubiquitin from target proteins and subsequently prevent their degradation by proteasomes. Previously, deubiquitination has been found to be involved in hepatocellular carcinoma (HCC) progression. As yet, however, little is known about the exact role of deubiquitination in the development and/or progression of this type of cancer.

Methods

HCC tissues and tissue microarrays were used to detect expression of the DUB ubiquitin-specific protease 2a (USP2a). The critical role of USP2a in HCC development and progression was assessed in both in vitro cell and in vivo animal models. LC-MS/MS analyses were performed to identify potential targets of USP2a in HCC cells, after which regulation of target protein stability and ubiquitin status by USP2a were investigated.

Results

We found that USP2a was significantly upregulated in HCC tissues, and that a high expression was positively associated with a poor prognosis. Subsequently, we found that USP2a silencing resulted in inhibition of HCC cell proliferation, migration and invasion, whereas exogenous USP2a overexpression resulted in the opposite effects, both in vitro and in vivo. Mechanistically, LC-MS/MS analysis revealed that RAB1A, a key regulator of the ER and Golgi vesicular transport system, serves as a potential target of USP2a in HCC cells. In addition, we found that USP2a can deubiquitinate and stabilize RAB1A and prevent its degradation, and that this process is required for inducing HCC progression by USP2a.

Conclusions

Our data indicate that USP2a can promote HCC progression via deubiquitination and stabilization of RAB1A. This observation indicates that DUB targeting may serve as a novel approach to improve the treatment of HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018)

  2. J.D. Yang, P. Hainaut, G.J. Gores, A. Amadou, A. Plymoth, L.R. Roberts, A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol. 16, 589–604 (2019)

    Article  Google Scholar 

  3. A. Forner, M. Reig, J. Bruix, Hepatocellular carcinoma. Lancet 391, 1301–1314 (2018)

  4. J.M. Llovet, R. Montal, D. Sia, R.S. Finn, Molecular therapies and precision medicine for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 15, 599–616 (2018)

    Article  Google Scholar 

  5. C. Berasain, Hepatocellular carcinoma and sorafenib: too many resistance mechanisms? Gut 62, 1674–1675 (2013)

  6. E. Oh, D. Akopian, M. Rape, Principles of ubiquitin-dependent signaling. Ann. Rev. Cell Dev. Biol. 34, 137–162 (2018)

    Article  CAS  Google Scholar 

  7. J.J. Sacco, J.M. Coulson, M.J. Clague, S. Urbe, Emerging roles of deubiquitinases in cancer-associated pathways. IUBMB Life 62, 140–157 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. J.A. Harrigan, X. Jacq, N.M. Martin, S.P. Jackson, Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat. Rev. Drug Discov. 17, 57–78 (2018)

    Article  CAS  Google Scholar 

  9. A. Pal, M.A. Young, N.J. Donato, Emerging potential of therapeutic targeting of ubiquitin-specific proteases in the treatment of cancer. Cancer Res. 74, 4955–4966 (2014)

    Article  CAS  Google Scholar 

  10. Y. Ma, H.L. Fu, Z. Wang, H. Huang, J. Ni, J. Song, Y. Xia, W.L. Jin, D.X. Cui, USP22 maintains gastric cancer stem cell stemness and promotes gastric cancer progression by stabilizing BMI1 protein. Oncotarget 8, 33329–33342 (2017)

    Article  Google Scholar 

  11. W. Li, K. Cui, E.V. Prochownik, Y. Li, The deubiquitinase USP21 stabilizes MEK2 to promote tumor growth. Cell Death Dis. 9, 482 (2018)

    Article  CAS  Google Scholar 

  12. J.B. Cai, G.M. Shi, Z.R. Dong, A.W. Ke, H.H. Ma, Q. Gao, Z.Z. Shen, X.Y. Huang, H. Chen, D.D. Yu, L.X. Liu, P.F. Zhang, C. Zhang, M.Y. Hu, L.X. Yang, Y.H. Shi, X.Y. Wang, Z.B. Ding, S.J. Qiu, H.C. Sun, J. Zhou, Y.G. Shi, J. Fan, Ubiquitin-specific protease 7 accelerates p14(ARF) degradation by deubiquitinating thyroid hormone receptor-interacting protein 12 and promotes hepatocellular carcinoma progression. Hepatology 61, 1603–1614 (2015)

  13. C. Qiu, Y. Liu, Y. Mei, M. Zou, Z. Zhao, M. Ye, X. Wu, Ubiquitin-specific protease 4 promotes metastasis of hepatocellular carcinoma by increasing TGF-beta signaling-induced epithelial-mesenchymal transition. Aging 10, 2783–2799 (2018)

    Article  CAS  Google Scholar 

  14. E. Graner, D. Tang, S. Rossi, A. Baron, T. Migita, L.J. Weinstein, M. Lechpammer, D. Huesken, J. Zimmermann, S. Signoretti, M. Loda, The isopeptidase USP2a regulates the stability of fatty acid synthase in prostate cancer. Cancer Cell 5, 253–261 (2004)

    Article  CAS  Google Scholar 

  15. L.F. Stevenson, A. Sparks, N. Allende-Vega, D.P. Xirodimas, D.P. Lane, M.K. Saville, The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2. EMBO J. 26, 976–986 (2007)

    Article  CAS  Google Scholar 

  16. Z. Liu, S.M. Zanata, J. Kim, M.A. Peterson, D. Di Vizio, L.R. Chirieac, S. Pyne, M. Agostini, M.R. Freeman, M. Loda, The ubiquitin-specific protease USP2a prevents endocytosis-mediated EGFR degradation. Oncogene 32, 1660–1669 (2013)

    Article  CAS  Google Scholar 

  17. J. Kim, F. Alavi Naini, Y. Sun, L. Ma, Ubiquitin-specific peptidase 2a (USP2a) deubiquitinates and stabilizes beta-catenin. Am. J. Cancer Res. 8, 1823–1836 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. J. Shan, W. Zhao, W. Gu, Suppression of cancer cell growth by promoting cyclin D1 degradation. Mol. Cell 36, 469–476 (2009)

    Article  CAS  Google Scholar 

  19. C. Qiu, X. Bu, Z. Jiang, Protocadherin-10 acts as a tumor suppressor gene, and is frequently downregulated by promoter methylation in pancreatic cancer cells. Oncol. Rep. 36, 383–389 (2016)

    Article  CAS  Google Scholar 

  20. M.H. Yang, C.L. Chen, G.Y. Chau, S.H. Chiou, C.W. Su, T.Y. Chou, W.L. Peng, J.C. Wu, Comprehensive analysis of the independent effect of twist and snail in promoting metastasis of hepatocellular carcinoma. Hepatology 50, 1464–1474 (2009)

  21. C. Priolo, D. Tang, M. Brahamandan, B. Benassi, E. Sicinska, S. Ogino, A. Farsetti, A. Porrello, S. Finn, J. Zimmermann, P. Febbo, M. Loda, The isopeptidase USP2a protects human prostate cancer from apoptosis. Cancer Res. 66, 8625–8632 (2006)

    Article  CAS  Google Scholar 

  22. J. Kim, W.J. Kim, Z. Liu, M. Loda, M.R. Freeman, The ubiquitin-specific protease USP2a enhances tumor progression by targeting cyclin A1 in bladder cancer. Cell Cycle 11, 1123–1130 (2012)

  23. B.B. Tao, H. He, X.H. Shi, C.L. Wang, W.Q. Li, B. Li, Y. Dong, G.H. Hu, L.J. Hou, C. Luo, J.X. Chen, H.R. Chen, Y.H. Yu, Q.F. Sun, Y.C. Lu, Up-regulation of USP2a and FASN in gliomas correlates strongly with glioma grade. J. Clin. Neurosci. 20, 717–720 (2013)

    Article  CAS  Google Scholar 

  24. D.F. Calvisi, C. Wang, C. Ho, S. Ladu, S.A. Lee, S. Mattu, G. Destefanis, S. Delogu, A. Zimmermann, J. Ericsson, S. Brozzetti, T. Staniscia, X. Chen, F. Dombrowski, M. Evert, Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma. Gastroenterology 140, 1071–1083 (2011)

    Article  CAS  Google Scholar 

  25. A. Moeini, H. Cornella, A. Villanueva, Emerging signaling pathways in hepatocellular carcinoma. Liver Cancer 1, 83–93 (2012)

    Article  CAS  Google Scholar 

  26. M.J. Heo, Y.M. Kim, J.H. Koo, Y.M. Yang, J. An, S.K. Lee, S.J. Lee, K.M. Kim, J.W. Park, S.G. Kim, microRNA-148a dysregulation discriminates poor prognosis of hepatocellular carcinoma in association with USP4 overexpression. Oncotarget 5, 2792–2806 (2014)

    Article  Google Scholar 

  27. Q. Qu, Y. Mao, G. Xiao, X. Fei, J. Wang, Y. Zhang, J. Liu, G. Cheng, X. Chen, J. Wang, K. Shen, USP2 promotes cell migration and invasion in triple negative breast cancer cell lines. Tumour Biol. 36, 5415–5423 (2015)

    Article  CAS  Google Scholar 

  28. C.L. Wang, J.Y. Wang, Z.Y. Liu, X.M. Ma, X.W. Wang, H. Jin, X.P. Zhang, D. Fu, L.J. Hou, Y.C. Lu, Ubiquitin-specific protease 2a stabilizes MDM4 and facilitates the p53-mediated intrinsic apoptotic pathway in glioblastoma. Carcinogenesis 35, 1500–1509 (2014)

    Article  CAS  Google Scholar 

  29. A.H. Hutagalung, P.J. Novick, Role of Rab GTPases in membrane traffic and cell physiology. Physiol. Rev. 91, 119–149 (2011)

    Article  CAS  Google Scholar 

  30. M.C. Lee, E.A. Miller, J. Goldberg, L. Orci, R. Schekman, Bi-directional protein transport between the ER and Golgi. Ann. Rev. Cell. Dev. Biol. 20, 87–123 (2004)

    Article  CAS  Google Scholar 

  31. I. Kim, W. Xu, J.C. Reed, Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov. 7, 1013–1030 (2008)

    Article  CAS  Google Scholar 

  32. C.E. Chua, B.L. Tang, Role of Rab GTPases and their interacting proteins in mediating metabolic signalling and regulation. Cell. Mol. Life Sci. 72, 2289–2304 (2015)

    Article  CAS  Google Scholar 

  33. X.Z. Yang, X.X. Li, Y.J. Zhang, L. Rodriguez-Rodriguez, M.Q. Xiang, H.Y. Wang, X.F. Zheng, Rab1 in cell signaling, cancer and other diseases. Oncogene 35, 5699–5704 (2016)

    Article  CAS  Google Scholar 

  34. J.D. Thomas, Y.J. Zhang, Y.H. Wei, J.H. Cho, L.E. Morris, H.Y. Wang, X.F.S. Zheng, Rab1A is an mTORC1 activator and a colorectal oncogene. Cancer Cell 30, 181–182 (2016)

    Article  CAS  Google Scholar 

  35. X. Wang, F. Liu, X. Qin, T. Huang, B. Huang, Y. Zhang, B. Jiang, Expression of Rab1A is upregulated in human lung cancer and associated with tumor size and T stage. Aging 8, 2790–2798 (2016)

    Article  CAS  Google Scholar 

  36. B.H. Xu, X.X. Li, Y. Yang, M.Y. Zhang, H.L. Rao, H.Y. Wang, X.F. Zheng, Aberrant amino acid signaling promotes growth and metastasis of hepatocellular carcinomas through Rab1A-dependent activation of mTORC1 by Rab1A. Oncotarget 6, 20813–20828 (2015)

    Article  Google Scholar 

  37. P. Hou, Y. Kang, J. Luo, Hypoxia-mediated miR-212-3p downregulation enhances progression of intrahepatic cholangiocarcinoma through upregulation of Rab1a. Cancer Biol. Ther. 19, 984-993 (2018)

  38. C.Z. Zhang, Y. Cao, J. Fu, J.P. Yun, M.F. Zhang, miR-634 exhibits anti-tumor activities toward hepatocellular carcinoma via Rab1A and DHX33. Mol. Oncol. 10, 1532–1541 (2016)

    Article  CAS  Google Scholar 

  39. X. Liu, B. Fu, D. Chen, Q. Hong, J. Cui, J. Li, X. Bai, X. Chen, miR-184 and miR-150 promote renal glomerular mesangial cell aging by targeting Rab1a and Rab31. Exp. Cell Res. 336, 192–203 (2015)

    Article  CAS  Google Scholar 

  40. D. Wu, B. Yang, J. Chen, H. Xiong, Y. Li, Z. Pan, Y. Cao, J. Chen, T. Li, S. Zhou, X. Ling, Y. Wei, G. Li, Y. Zhou, F. Qiu, L. Yang, J. Lu, Upregulation of long non-coding RNA RAB1A-2 induces FGF1 expression worsening lung cancer prognosis. Cancer Lett. 438, 116–125 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of Chongqing (cstc2020jcyj-msxmX0214) and the Science & Technology Department of Sichuan Province (2018JY0276).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan Qiu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, B., Huang, J., Liu, Y. et al. Ubiquitin-specific protease 2a promotes hepatocellular carcinoma progression via deubiquitination and stabilization of RAB1A. Cell Oncol. 44, 329–343 (2021). https://doi.org/10.1007/s13402-020-00568-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-020-00568-8

Keywords

Navigation