Skip to main content
Log in

Fabrication, Design and Application of Stretchable Strain Sensors for Tremor Detection in Parkinson Patient

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Due to increasing demand for wearable health monitoring devices, stretchable electronics have developed rapidly in recent years. For human motion detection, strain sensors must be highly stretchable, sensitive, and durable. Another important factor is low-cost fabrication. As such, the sensors in this research were made of carbon nanotubes (CNTs) and graphene in Polydimethylsiloxane (PDMS) using a solution casting method. In order to improve bending sensitivity, slits were created on the sensor surfaces. The strain sensors were placed on an index finger in order to detect and monitor the hand tremors of Parkinson’s patients. Furthermore, a wearable glove system with hardware components including an Arduino Nano controller, stretchable strain sensors, a Real Time Clock (RTC) Module, and a Micro SD card Adapter was developed for practical use in everyday life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hu, L., Qianming, L., Shuaidi, Z., Rui, Y., Xianhu, L., Yuxin, H., Kun, D., Chongxin, S., Jiang, G., Chuntai, L., Changyu, S., Xiaojing, W., Ning, W., Zicheng, W., Renbo, W., Zhanhu, G.: Electrically conductive polymer composites for smart flexible strain sensors: a critical review. J. Mater. Chem. C. 6, 12121–12141 (2018)

    Article  Google Scholar 

  2. Shuaidi, Z., Hu, L., Shuaiyuan, Y., Xianzhang, S., Dianbo, Z., Chongxin, S., Liwei, M., Chuntai, L., Changyu, S., Zhanhu, G.: Ultrasensitive and highly compressible Piezoresistive sensor based on polyurethane sponge coated with a cracked cellulose Nanofibril/silver nanowire layer. ACS Appl. Mater. Interfaces. 11(11), 10922–10932 (2019)

    Article  Google Scholar 

  3. Shuaidi, Z., Kang, S., Hu, L., Xiaoyu, C., Yanjun, Z., Xianzhang, S., Dianbo, Z., Liwei, M., Chuntai, L., Changyu, S.: Enhanced piezoresistive performance of conductive WPU/CNT composite foam through incorporating brittle cellulose nanocrystal. Chem. Eng. J. 387, 124045 (2020)

    Article  Google Scholar 

  4. Liwei, L., Ling, W., Bei, L., Junchen, L., Xuewu, H., Qiang, G., Huaiguo, X., Jiefeng, G.: Dual conductive network enabled superhydrophobic and high performance strain sensors with outstanding electro-thermal performance and extremely high gauge factors. Chem. Eng. J. 385, 123391 (2020)

    Article  Google Scholar 

  5. Rui Yin Shuaiyuan Yang, Qianming Li, Shuaidi Zhang, Hu Liu, Jian Han, Chuntai Liu, Changyu Shen, flexible conductive Ag nanowire/cellulose nanofibril hybrid nanopaper for strain and temperature sensing applications. Sci. Bull. 65(11), 899–908 (2020)

  6. Qianming, L., Hu, L., Shuaidi, Z., Dianbo, Z., Xianhu, L., Yuxin, H., Liwei, M., Jiaoxia, Z., Chuntai, L., Changyu, S., Zhanhu, G.: Superhydrophobic electrically conductive paper for ultrasensitive strain sensor with excellent anticorrosion and self-cleaning property. ACS Appl. Mater. Interfaces. 11(24), 21904–21914 (2019)

    Article  Google Scholar 

  7. Xiaoyu, C., Hu, L., Yanjun, Z., Yue, Z., Xianhu, L., Chuntai, L., Liwei, M., Zhanhu, G., Changyu, S.: Highly compressible and robust polyimide/carbon nanotube composite aerogel for high-performance wearable pressure sensor. ACS Appl. Mater. Interfaces. 11(45), 42594–42606 (2019)

    Article  Google Scholar 

  8. Yang, C., Ling, W., Zefeng, W., Junchen, L., Bei, L., Xuewu, H., Huaiguo, X., Jiefeng, G.: Super-hydrophobic, durable and cost-effective carbon black/rubber composites for high performance strain sensors. Compos. Part B: Eng. 176, 107358 (2019)

    Article  Google Scholar 

  9. Ling, W., Yang, C., Liwei, L., Hao, W., Xuewu, H., Huaiguo, X., Jiefeng, G.: Highly stretchable, anti-corrosive and wearable strain sensors based on the PDMS/CNTs decorated elastomer nanofiber composite. Chem. Eng. J. 362, 89–98 (2019)

    Article  Google Scholar 

  10. Bei, L., Junchen, L., Xuewu, H., Liwei, L., Ling, W., Mingjun, H., Longcheng, T., Huaiguo, X., Jiefeng, G., Yiu-Wing, M.: A highly stretchable, super-hydrophobic strain sensor based on polydopamine and graphene reinforced nanofiber composite for human motion monitoring. Compos. Part B: Eng. 181, 107580 (2020)

    Article  Google Scholar 

  11. Tadakaluru, S., Kumpika, T., Kantarak, E., Sroila, W., Panthawan, A., Sanmuangmoon, P., Thongsuwan, W., Singjai, P.: Highly stretchable and sensitive strain sensors using nano-graphene coated natural rubber. Plast. Rubber Compos. Macromol. Eng. 46(7), 301–305 (2017)

    Article  CAS  Google Scholar 

  12. Wu, S., Zhang, J., Ladani, R.B., Ravindarn, A.R., Mouritz, A.P., Kinloch, A.J., Wang, C.: Novel electrically conductive porous PDMS/carbon nanofiber composites for deformable strain sensors and conductors. ACS Appl. Mater. Interfaces. 9(16), 14207–14215 (2017)

    Article  CAS  Google Scholar 

  13. Du, J., Cheng, H.: The Fabrication, Properties, and Uses of Graphene/Polymer Composites. Macromol. Chem. Phys. 213, 1060–1077 (2012)

    Article  CAS  Google Scholar 

  14. Ma, P.C., Liu, M.Y., Zhang, H., Wang, S.Q., Wang, R., Wang, K., Wong, Y.K., Tang, B., Hong, S., Paik, K.W., Kim, J.K.: Enhanced electrical conductivity of Nanocomposites containing hybrid fillers of carbon nanotubes and carbon black. ACS Appl. Mater. Interfaces. 1, 1090–1096 (2009)

    Article  CAS  Google Scholar 

  15. Wu, X., Lu, C., Han, Y., Zhou, Z., Yuan, G., Zhang, X.: Cellulose nanowhisker modulated 3D hierarchical conductive structure of carbon black/natural rubber nanocomposites for liquid and strain sensing application. Compos. Sci. Technol. 124, 44–51 (2016)

    Article  CAS  Google Scholar 

  16. Zhang, R., Deng, H., Valenca, R., Jin, J.H., Fu, Q., Bilotti, E., Peijs, T.: Strain sensing behaviour of elastomeric composite films containing carbon nanotubes under cyclic loading. Compos. Sci. Technol. 74, 1–5 (2013)

    Article  CAS  Google Scholar 

  17. Du, J., Zhao, L., Zeng, Y., Zhang, L., Li, F., Liu, P., Liu, C.: Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene composites with a segregated network structure. Carbon. 49(4), 1094–1100 (2011)

    Article  CAS  Google Scholar 

  18. Liu, H., Li, Y., Dai, K., Zheng, G., Liu, C., Shen, C., Yan, X., Guo, J., Guo, Z.: Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications. J. Mater. Chem. C. 4, 157–166 (2016)

    Article  CAS  Google Scholar 

  19. Yanjun, Z., Yilong, L., Kun, D., Yan, W., Guoqiang, Z., Chuntai, L., Changyu, S.: A highly stretchable and stable strain sensor based on hybrid carbon nanofillers/polydimethylsiloxane conductive composites for large human motions monitoring. Compos. Sci. Technol. 156, 276–286 (2018)

    Article  Google Scholar 

  20. Duan, L., Fu, S., Deng, H., Zhang, Q., Wang, K., Chen, F., Fu, Q.: The resistivity-strain behavior of conductive polymer composites: stability and sensitivity. J. Mater. Chem. 2, 17085–17098 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research project is supported by Chiang Mai University, Center of Excellence in Materials Science and Technology, National Science and Technology Development Agency (NSTDA), Center of Advanced Materials for Printed Electronics and Sensors and the Center of Excellence in Advanced Materials for Printed Electronics and Sensors (CMU-NECTEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Singjai.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kantarak, E., Rucman, S., Kumpika, T. et al. Fabrication, Design and Application of Stretchable Strain Sensors for Tremor Detection in Parkinson Patient. Appl Compos Mater 27, 955–968 (2020). https://doi.org/10.1007/s10443-020-09834-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-020-09834-2

Keywords

Navigation