Skip to main content

Advertisement

Log in

Pollen calendars and regional gradients as information tools in the Extremadura pollen monitoring network (SW Spain)

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Pollen allergies are one of the most important problems among respiratory diseases in today’s society. The creation and development of aerobiological information tools are useful to provide information to patients and doctors. In this work, we analysed the pollen spectrum of Extremadura to generate pollen calendars for Badajoz, Cáceres, Don Benito, Plasencia and Zafra. Additionally, we analysed regional pollen gradients and plotted the main pollen season (MPS) characteristics (start date, peak date, end date and duration) in each city. In Extremadura, 35–40 different types of pollen are frequently identified, the most abundant of which (in decreasing order) belong to Quercus, Poaceae, Olea, Cupressaceae, Platanus, Plantago and Pinus. The dates when the highest accumulation of pollen occurs in the air are from mid-April to the end of May in Badajoz and Cáceres; from mid-March to early June for Don Benito; from mid-April to early June for Plasencia; and from mid-April to 10 June for Zafra. Moreover, it could be confirmed that in the Extremadura region, the start date and the peak date occur earlier in the cities in the south of the region and that the duration of the pollen season is longer in these cities. The differences observed among cities may be due to the varieties of urban species and their management (pruning and irrigation), the influence of peri-urban landscapes, medium- and long-distance pollen transport and climate. The representation and geolocation of pollen calendars obtained using geographic gradients provide information in a simple, fast and visual way and can be of great interest to allergic patients and health professionals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • AEMET. (2020). Valores climatológicos normales: Badajoz Aeropuerto - Agencia Estatal de Meteorología - AEMET. Gobierno de España, 2020.

  • Aguilera, F., Dhiab, A. B., Msallem, M., Orlandi, F., Bonofiglio, T., Ruiz-Valenzuela, L., et al. (2015). Airborne-pollen maps for olive-growing areas throughout the Mediterranean region: spatio-temporal interpretation. Aerobiologia, 31, 421–434. https://doi.org/10.1007/s10453-015-9375-5.

    Article  Google Scholar 

  • Alcázar, P., García-Mozo, H., Trigo, M. D. M., Ruiz, L., González-Minero, F. J., Hidalgo, P., et al. (2011). Platanus pollen season in Andalusia (southern Spain): Trends and modeling. Journal of Environmental Monitoring, 13, 2502–2510. https://doi.org/10.1039/c1em10355e.

    Article  CAS  Google Scholar 

  • Boi, M., & Llorens, L. (2013). Annual pollen spectrum in the air of Palma de Mallorca (Balearic Islands, Spain). Aerobiologia, 29, 385–397. https://doi.org/10.1007/s10453-013-9288-0.

    Article  Google Scholar 

  • Caiaffa, M. F., Macchia, L., Strada, S., Bariletto, G., Scarpelli, F., & Tursi, A. (1993). Airborne Cupressaceae pollen in Southern Italy. Annals of Allergy, 71, 45–50.

    CAS  Google Scholar 

  • Camacho, I. C., Caeiro, E., Ferro, R., Camacho, R., Câmara, R., Grinn-Gofroń, A., et al. (2017). Spatial and temporal variations in the Annual Pollen Index recorded by sites belonging to the Portuguese Aerobiology Network. Aerobiologia, 33, 265–279. https://doi.org/10.1007/s10453-016-9468-9.

    Article  Google Scholar 

  • Cariñanos, P., Casares-Porcel, M., & Quesada-Rubio, J. (2014). Estimating the allergenic potential of urban green spaces: A case-study in Granada, Spain. Landscape and Urban Planning, 123, 134–144. https://doi.org/10.1016/j.landurbplan.2013.12.009.

    Article  Google Scholar 

  • Charpin, D., Calleja, M., Lahoz, C., Pichot, C., & Waisel, Y. (2005). Allergy to cypress pollen. Allergy: European Journal of Allergy and Clinical Immunology, 60, 293–301. https://doi.org/10.1111/j.1398-9995.2005.00731.x.

    Article  CAS  Google Scholar 

  • Cristofori, A., Cristofolini, F., & Gottardini, E. (2010). Twenty years of aerobiological monitoring in Trentino (Italy): Assessment and evaluation of airborne pollen variability. Aerobiologia, 26, 253–261. https://doi.org/10.1007/s10453-010-9161-3.

    Article  Google Scholar 

  • Csépe, Z., Leelőssy, Á., Mányoki, G., Kajtor-Apatini, D., Udvardy, O., Péter, B., et al. (2019). The application of a neural network-based ragweed pollen forecast by the Ragweed Pollen Alarm System in the Pannonian biogeographical region. Aerobiologia. https://doi.org/10.1007/s10453-019-09615-w.

    Article  Google Scholar 

  • Cuevas, E., Vianna, J. A., Botero-Delgadillo, E., Doussang, D., González-Acuña, D., Barroso, O., et al. (2020). Latitudinal gradients of haemosporidian parasites: Prevalence, diversity and drivers of infection in the Thorn-tailed Rayadito (Aphrastura spinicauda). IJP: Parasites and Wildlife, 11, 1–11. https://doi.org/10.1016/j.ijppaw.2019.11.002.

    Article  Google Scholar 

  • Dai, J., Wang, H., & Ge, Q. (2014). The spatial pattern of leaf phenology and its response to climate change in China. International Journal of Biometeorology, 58, 521–528.

    Article  Google Scholar 

  • D’amato, G., & Spieksma, F. T. M. (1992). European allergenic pollen types. Aerobiologia, 8, 447–450. https://doi.org/10.1007/BF02272914.

    Article  Google Scholar 

  • De Weger, L. A., Bergmann, K. C., Rantio-Lehtimäki, A., Dahl, A., Buters, J., Déchamp, C., et al. (2013). Impact of pollen. Allergenic pollen: A review of the production, release, distribution and health impacts, 9789400748811, 161–215. https://doi.org/10.1007/978-94-007-4881-1_6.

    Article  Google Scholar 

  • Dominguez, Vilches E., Infante, Garcia-Pantaleon F., Galan, Soldevilla C., Guerra, Pasadas F., & Villamandos De La Torre, F. (1993). Variations in the concentrations of airborne Olea pollen and associated pollinosis in Cordoba (Spain): A study of the 10-year period 1982-1991. Journal of Investigational Allergology and Clinical Immunology, 3, 121–129.

    Google Scholar 

  • Elvira-Rendueles, B., Moreno, J. M., Costa, I., Bañón, D., Martínez-García, M. J., & Moreno-Grau, S. (2019). Pollen calendars of Cartagena, Lorca, and Murcia (Region of Murcia), southeastern Iberian Peninsula: 2010–2017. Aerobiologia, 35, 477–496. https://doi.org/10.1007/s10453-019-09578-y.

    Article  Google Scholar 

  • Fernández, J. (1992). Allergenic activity of date palm (Phoenix dactylifera) pollen. Journal of Allergy and Clinical Immunology, 89, 148.

    Google Scholar 

  • Fernández-Rodríguez, S., Cortés-Pérez, J. P., Muriel, P. P., Tormo-Molina, R., & Maya-Manzano, J. M. (2018a). Environmental impact assessment of Pinaceae airborne pollen and green infrastructure using BIM. Automation in Construction, 96, 494–507. https://doi.org/10.1016/j.autcon.2018.10.011.

    Article  Google Scholar 

  • Fernández-Rodríguez, S., Durán-Barroso, P., Silva-Palacios, I., Tormo-Molina, R., Maya-Manzano, J. M., Gonzalo-Garijo, Á., et al. (2018b). Environmental assessment of allergenic risk provoked by airborne grass pollen through forecast model in a Mediterranean region. Journal of Cleaner Production, 176, 1304–1315. https://doi.org/10.1016/j.jclepro.2017.11.226.

    Article  Google Scholar 

  • Fernández-Rodríguez, S., Maya-Manzano, J. M., Colín, A. M., Pecero-Casimiro, R., Buters, J., & Oteros, J. (2020). Understanding hourly patterns of Olea pollen concentrations as tool for the environmental impact assessment. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.139363.

    Article  Google Scholar 

  • Fernández-Rodríguez, S., Skjøth, C. A., Tormo-Molina, R., Brandao, R., Caeiro, E., Silva-Palacios, I., et al. (2014a). Identification of potential sources of airborne Olea pollen in the Southwest Iberian Peninsula. International Journal of Biometeorology, 58, 337–348. https://doi.org/10.1007/s00484-012-0629-4.

    Article  Google Scholar 

  • Fernández-Rodríguez, S., Tormo-Molina, R., Maya-Manzano, J. M., Silva-Palacios, I., & Gonzalo-Garijo, Á. (2014b). Comparative study of the effect of distance on the daily and hourly pollen counts in a city in the south-western Iberian Peninsula. Aerobiologia, 30, 173–187. https://doi.org/10.1007/s10453-013-9316-0.

    Article  Google Scholar 

  • Galán, C., Ariatti, A., Bonini, M., Clot, B., Crouzy, B., Dahl, A., et al. (2017). Recommended terminology for aerobiological studies. Aerobiologia, 33, 293–295. https://doi.org/10.1007/s10453-017-9496-0.

    Article  Google Scholar 

  • Galán C., Cariñanos P., Alcázar P., & Dominguez-Vilches E. (2007). Spanish Aerobiology Network (REA) Management and Quality Manual. Servicio de Publicaciones Universidad de Córdoba.

  • Galán, C., Cuevas, J., Infante, F., & Domínguez, E. (1989). Seasonal and diurnal variation of pollen from Gramineae in the atmosphere of Córdoba Spain. Allergologia et Immunopathologia, 17, 245–249.

    Google Scholar 

  • Galán, C., Smith, M., Thibaudon, M., Frenguelli, G., Oteros, J., Gehrig, R., et al. (2014). Pollen monitoring: minimum requirements and reproducibility of analysis. Aerobiologia, 30, 385–395. https://doi.org/10.1007/s10453-014-9335-5.

    Article  Google Scholar 

  • García-Mozo, H., Galán, C., Belmonte, J., Bermejo, D., Candau, P., Díaz de la Guardia, C., et al. (2009). Predicting the start and peak dates of the Poaceae pollen season in Spain using process-based models. Agricultural and Forest Meteorology, 149, 256–262. https://doi.org/10.1016/j.agrformet.2008.08.013.

    Article  Google Scholar 

  • González-Naharro, R., Quirós, E., Fernández-Rodríguez, S., Silva-Palacios, I., Maya-Manzano, J. M., Tormo-Molina, R., et al. (2019). Relationship of NDVI and oak (Quercus) pollen including a predictive model in the SW Mediterranean region. Science of the Total Environment, 676, 407–419. https://doi.org/10.1016/j.scitotenv.2019.04.213.

    Article  CAS  Google Scholar 

  • Gonzalo-Garijo, M. A., Tormo-Molina, R., Muñoz-Rodríguez, A. F., & Silva-Palacios, I. (2006). Differences in the spatial distribution of airborne pollen concentrations at different urban locations within a city. Journal of Investigational Allergology and Clinical Immunology, 16, 37–43.

    Google Scholar 

  • Grégori, M., Schmitt, J. P., Pallarès, C., Rozenfarb, D., Pautz, F., Astafieff, K., et al. (2019). Pollin’air: un réseau de citoyens au service des personnes allergiques. Revue Française d’Allergologie, 59, 533–542. https://doi.org/10.1016/j.reval.2019.09.004.

    Article  Google Scholar 

  • Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39, 257–265.

    Article  Google Scholar 

  • Katotomichelakis, M., Nikolaidis, C., Makris, M., Zhang, N., Aggelides, X., Constantinidis, T. C., et al. (2015). The clinical significance of the pollen calendar of the Western Thrace/northeast Greece region in allergic rhinitis. International Forum of Allergy and Rhinology, 5, 1156–1163. https://doi.org/10.1002/alr.21623.

    Article  Google Scholar 

  • Lo, F., Bitz, C. M., Battisti, D. S., & Hess, J. J. (2019). Pollen calendars and maps of allergenic pollen in North America. Aerobiologia, 35, 613–633. https://doi.org/10.1007/s10453-019-09601-2.

    Article  Google Scholar 

  • Martínez-Bracero, M., Alcázar, P., Díaz de la Guardia, C., González-Minero, F. J., Ruiz, L., Trigo Pérez, M. M., et al. (2015). Pollen calendars: A guide to common airborne pollen in Andalusia. Aerobiologia, 31, 549–557. https://doi.org/10.1007/s10453-015-9385-3.

    Article  Google Scholar 

  • Maya Manzano, J. M., Tormo, Molina R., Fernández, Rodríguez S., Silva, Palacios I., & Gonzalo, Garijo Á. (2017). Distribution of ornamental urban trees and their influence on airborne pollen in the SW of Iberian Peninsula. Landscape and Urban Planning, 157, 434–446. https://doi.org/10.1016/j.landurbplan.2016.08.011.

    Article  Google Scholar 

  • Maya-Manzano, J. M., Fernández-Rodríguez, S., Monroy-Colín, A., Silva-Palacios, I., Tormo-Molina, R., & Gonzalo-Garijo, Á. (2017a). Allergenic pollen of ornamental plane trees in a Mediterranean environment and urban planning as a prevention tool. Urban Forestry and Urban Greening, 27, 352–362. https://doi.org/10.1016/j.ufug.2017.09.009.

    Article  Google Scholar 

  • Maya-Manzano, J. M., Fernández-Rodríguez, S., Silva-Palacios, I., Gonzalo-Garijo, Á., & Tormo-Molina, R. (2018). Comparison between two adhesives (silicone and petroleum jelly) in Hirst pollen traps in a controlled environment. Grana, 57(1–2), 137–143.

    Article  Google Scholar 

  • Maya-Manzano, J. M., Fernández-Rodríguez, S., Smith, M., Tormo-Molina, R., Reynolds, A. M., Silva-Palacios, I., et al. (2016). Airborne Quercus pollen in SW Spain: Identifying favourable conditions for atmospheric transport and potential source areas. Science of the Total Environment, 571, 1037–1047. https://doi.org/10.1016/j.scitotenv.2016.07.094.

    Article  CAS  Google Scholar 

  • Maya-Manzano, J. M., Sadys, M., Tormo-Molina, R., Fernández-Rodríguez, S., Oteros, J., Silva-Palacios, I., et al. (2017b). Relationships between airborne pollen grains, wind direction and land cover using GIS and circular statistics. Science of the Total Environment, 584–585, 603–613. https://doi.org/10.1016/j.scitotenv.2017.01.085.

    Article  CAS  Google Scholar 

  • Monroy-Colín, A., Maya-Manzano, J. M., Tormo-Molina, R., Pecero-Casimiro, R., Gonzalo-Garijo, M. Á., & Fernández-Rodríguez, S. (2020). HYSPLIT as an environmental impact assessment tool to study the data discrepancies between Olea europaea airborne pollen records and its phenology in SW Spain. Urban Forestry and Urban Greening. https://doi.org/10.1016/j.ufug.2020.126715.

    Article  Google Scholar 

  • Nilsson, S., & Persson, S. (1981). Tree pollen spectra in the Stockholm region (Sweden), 1973-1980. Grana, 20, 179–182. https://doi.org/10.1080/00173138109427661.

    Article  Google Scholar 

  • NSI N.S.I. (2019). Cifras oficiales de población de los municipios españoles, 2019.

  • O’Rourke, M. K. (1990). Comparative pollen calendars from Tucson, Arizona: Durham vs. Burkard samplers. Aerobiologia, 6, 136–140. https://doi.org/10.1007/BF02539105.

    Article  Google Scholar 

  • Oteros, J., Bergmann, K., Menzel, A., Damialis, A., Traidl-Hoffmann, C., Schmidt-Weber, C. B., et al. (2019). Spatial interpolation of current airborne pollen concentrations where no monitoring exists. Atmospheric Environment, 199, 435–442. https://doi.org/10.1016/j.atmosenv.2018.11.045.

    Article  CAS  Google Scholar 

  • Pauling, A., Gehrig, R., & Clot, B. (2014). Toward optimized temperature sum parameterizations for forecasting the start of the pollen season. Aerobiologia, 30, 45–57. https://doi.org/10.1007/s10453-013-9308-0.

    Article  Google Scholar 

  • Pawankar, R. (2014). Allergic diseases and asthma: A global public health concern and a call to action. World Allergy Organization Journal. https://doi.org/10.1186/1939-4551-7-12.

    Article  Google Scholar 

  • Pecero-Casimiro, R., Fernández-Rodríguez, S., Tormo-Molina, R., Monroy-Colín, A., Silva-Palacios, I., Cortés-Pérez, J. P., et al. (2019). Urban aerobiological risk mapping of ornamental trees using a new index based on LiDAR and Kriging: A case study of plane trees. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2019.07.382.

    Article  Google Scholar 

  • Pellerin, M., Delestrade, A., Mathieu, G., Rigault, O., & Yoccoz, N. G. (2012). Spring tree phenology in the Alps: Effects of air temperature, altitude and local topography. European Journal of Forest Research, 131, 1957–1965.

    Article  Google Scholar 

  • Pérez-Badia, R., Rapp, A., Morales, C., Sardinero, S., Galán, C., & García-Mozo, H. (2010). Pollen spectrum and risk of pollen allergy in central Spain. Annals of Agricultural and Environmental Medicine, 17, 139–151.

    Google Scholar 

  • R Core Team. (2017). R: A language and environment for statistical computing. Vienna: Austria.

    Google Scholar 

  • Rodríguez-de la Cruz, D., Sánchez-Reyes, E., Dávila-González, I., Lorente-Toledano, F., & Sánchez-Sánchez, J. (2010). Airborne pollen calendar of Salamanca, Spain, 2000–2007. Allergology and Immunopathology (Allergologia et Immunopathologia), 38, 307–312. https://doi.org/10.1016/j.aller.2010.04.001.

    Article  Google Scholar 

  • Rojo, J., Picornell, A., & Oteros, J. (2019). AeRobiology: The computational tool for biological data in the air. Methods in Ecology and Evolution, 10, 1371–1376. https://doi.org/10.1111/2041-210X.13203.

    Article  Google Scholar 

  • Rojo, J., Rapp, A., Lara, B., Fernández-González, F., & Pérez-Badia, R. (2015). Effect of land uses and wind direction on the contribution of local sources to airborne pollen. Science of the Total Environment, 538, 672–682. https://doi.org/10.1016/j.scitotenv.2015.08.074.

    Article  CAS  Google Scholar 

  • Rojo, J., Rapp, A., Lara, B., Sabariego, S., Fernández-González, F., & Pérez-Badia, R. (2016). Characterisation of the airborne pollen spectrum in Guadalajara (central Spain) and estimation of the potential allergy risk. Environmental Monitoring and Assessment, 188, 1–13. https://doi.org/10.1007/s10661-016-5129-2.

    Article  CAS  Google Scholar 

  • SEAIC. (2017). Alergológica 2015. Retrieved December 22, 2019, from http://www.seaic.org/profesionales/alergologica-2015.

  • Sharma, C. M., Khanduri, V. P., & Ghildiyal, S. K. (2012). Reproductive ecology of male and female strobili and mating system in two different populations of Pinus roxburghii. Scientific World Journal, 2012, 271389. https://doi.org/10.1100/2012/271389.

    Article  Google Scholar 

  • Šikoparija, B., Marko, O., Panic, M., Jakovetic, D., & Radišic, P. (2018). How to prepare a pollen calendar for forecasting daily pollen concentrations of Ambrosia, Betula and Poaceae. Aerobiologia, 34, 203–217. https://doi.org/10.1007/s10453-018-9507-9.

    Article  Google Scholar 

  • Silva, Palacios I., Silva, Palacios I., Tormo, Molina R., Tormo, Molina R., Muñoz, Rodríguez A., & Muñoz, Rodríguez A. (2007). The importance of interactions between meteorological conditions when interpreting their effect on the dispersal of pollen from homogeneously distributed sources. Aerobiologia, 23, 17–26. https://doi.org/10.1007/s10453-006-9041-z.

    Article  Google Scholar 

  • Singh, N., Singh, U., Singh, D., Daya, M., & Singh, V. (2017). Correlation of pollen counts and number of hospital visits of asthmatic and allergic rhinitis patients. Lung India, 34, 127–131. https://doi.org/10.4103/0970-2113.201313.

    Article  Google Scholar 

  • Smith, M., Skjøth, C. A., Myszkowska, D., Uruska, A., Puc, M., Stach, A., et al. (2008). Long-range transport of Ambrosia pollen to Poland. Agricultural and Forest Meteorology, 148, 1402–1411. https://doi.org/10.1016/j.agrformet.2008.04.005.

    Article  Google Scholar 

  • Spieksma, F. T. M. (1991). Regional European pollen calendar. In G. D’Amato, F. T. M. Spieksma, & S. Bonini (Eds.), Allergenic Pollen and Pollinosis in Europe. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Sung, M., Kim, S. W., Kim, J. H., & Lim, D. H. (2017). Regional difference of causative pollen in children with allergic rhinitis. Journal of Korean Medical Science, 32, 926–932. https://doi.org/10.3346/jkms.2017.32.6.926.

    Article  Google Scholar 

  • Tormo, Molina R., Maya Manzano, J. M., Fernández, Rodríguez S., Gonzalo Garijo, Á., & Silva, Palacios I. (2013). Influence of environmental factors on measurements with Hirst spore traps. Grana, 52, 59–70. https://doi.org/10.1080/00173134.2012.718359.

    Article  Google Scholar 

  • Tormo-Molina, R., Maya-Manzano, J., Silva-Palacios, I., Fernández-Rodríguez, S., & Gonzalo-Garijo, Á. (2015). Flower production and phenology in Dactylis glomerata. Aerobiologia, 31, 469–479. https://doi.org/10.1007/s10453-015-9381-7.

    Article  Google Scholar 

  • Tormo-Molina, R., Rodríguez, A. M., Silva-Palacios, I., & López, F. G. (1996). Pollen production in anemophilous trees. Grana, 35, 38–46. https://doi.org/10.1080/00173139609430499.

    Article  Google Scholar 

  • Walk, J., Stauch, G., Reyers, M., Vásquez, P., Sepúlveda, F. A., Bartz, M., et al. (2020). Gradients in climate, geology, and topography affecting coastal alluvial fan morphodynamics in hyperarid regions—The Atacama perspective. Global and Planetary Change, 185, 102994. https://doi.org/10.1016/j.gloplacha.2019.102994.

    Article  Google Scholar 

  • Wang, Q., Nakamura, S., Lu, S., Nakajima, D., Suzuki, M., Sekiguchi, K., et al. (2013). Diurnal and nocturnal behaviour of airborne Cryptomeria japonica pollen grains and the allergenic species in urban atmosphere of saitama, Japan. Asian Journal of Atmospheric Environment, 7, 65–71. https://doi.org/10.5572/ajae.2013.7.2.065.

    Article  Google Scholar 

  • Werchan, M., Werchan, B., & Bergmann, K. (2018). German pollen calendar 4.0—update based on 2011–2016 pollen data. Allergo Journal International, 27, 69–71. https://doi.org/10.1007/s40629-018-0055-1.

    Article  Google Scholar 

  • Zewdie, G. K., Lary, D. J., Liu, X., Wu, D., & Levetin, E. (2019). Estimating the daily pollen concentration in the atmosphere using machine learning and NEXRAD weather radar data. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-019-7542-9.

    Article  Google Scholar 

Download references

Acknowledgements

This work was possible by funds from research projects IB16029 and research group said GR18113 financed by the Regional Government, Junta de Extremadura (Spain) and FEDER. Particularly, the National Commission of Science and Technology of Mexico (CONACyT) funds to A.M.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Pecero-Casimiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pecero-Casimiro, R., Maya-Manzano, J.M., Fernández-Rodríguez, S. et al. Pollen calendars and regional gradients as information tools in the Extremadura pollen monitoring network (SW Spain). Aerobiologia 36, 731–748 (2020). https://doi.org/10.1007/s10453-020-09667-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-020-09667-3

Keywords

Navigation