Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 14, 2020

Radicals in prebiotic chemistry

  • Renee W. J. Lim and Albert C. Fahrenbach

    Albert C. Fahrenbach received his BS in Chemistry from Indiana University in 2008, having done research under the tutelage of Professor Amar Flood in synthetic and supramolecular chemistry. He received his PhD from Northwestern University in Organic Chemistry in 2013 under the mentorship of Professor Sir Fraser Stoddart investigating the molecular self-assembly and template-directed syntheses of artificial molecular switches and machines. Albert then moved to Boston to carry out research in origins-of-life chemistry as a postdoctoral scholar with Professor Jack Szostak at Harvard University and Massachusetts General Hospital. As part of a unique Fellowship opportunity during this time, Albert also spent three months of the year at the Tokyo Institute of Technology in the Earth-Life Science Institute (ELSI), a research centre which specialises in origins-of-life research. Thereafter, Albert spent a year with ELSI as an Associate Principal Investigator before moving in 2018 to the University of New South Wales, where he currently resides as a Lecturer in the School of Chemistry. He is an awardee of the 2014 IUPAC-Solvay International Award for Young Chemists.

    ORCID logo EMAIL logo

Abstract

Radical chemistry is tightly interwoven in proposed prebiotic synthetic pathways, reaction networks and geochemical scenarios that have helped shape our understanding of how life could have originated. Gas-phase prebiotic reactions involving electric discharge, vapour ablation by asteroidal and cometary impacts as well as ionising radiation all produce radicals that facilitate complex molecular synthesis. Reactions in the solid phase which are responsible for astrochemical syntheses can also take place through radicals produced via irradiation of protoplanetary/interstellar ice grains and dust particles. Aqueous-phase radical chemistry affords further molecular complexity promoting the production of precursors for the synthesis of biopolymers thought important for the emergence of life. Radical chemistry appears to be a common thread amongst all kinds of prebiotic investigations, and this Review aims to bring attention to a few selected examples. Some important historical studies and modern developments with respect to prebiotic chemistry are summarised through the lens of radical chemistry.


Corresponding author: Albert C. Fahrenbach, School of Chemistry, University of New South Wales, Sydney, 2052NSW, Australia, E-mail: .
Article note: A collection of peer-reviewed articles by past winners of the IUPAC and IUPAC-SOLVAY International Award for Young Chemists to celebrate the 60th anniversary of Pure and Applied Chemistry.

Funding source: UNSW’s Strategic Hires and Retention Pathways (SHARP)

About the author

Albert C. Fahrenbach

Albert C. Fahrenbach received his BS in Chemistry from Indiana University in 2008, having done research under the tutelage of Professor Amar Flood in synthetic and supramolecular chemistry. He received his PhD from Northwestern University in Organic Chemistry in 2013 under the mentorship of Professor Sir Fraser Stoddart investigating the molecular self-assembly and template-directed syntheses of artificial molecular switches and machines. Albert then moved to Boston to carry out research in origins-of-life chemistry as a postdoctoral scholar with Professor Jack Szostak at Harvard University and Massachusetts General Hospital. As part of a unique Fellowship opportunity during this time, Albert also spent three months of the year at the Tokyo Institute of Technology in the Earth-Life Science Institute (ELSI), a research centre which specialises in origins-of-life research. Thereafter, Albert spent a year with ELSI as an Associate Principal Investigator before moving in 2018 to the University of New South Wales, where he currently resides as a Lecturer in the School of Chemistry. He is an awardee of the 2014 IUPAC-Solvay International Award for Young Chemists.

Acknowledgments

The authors would like to acknowledge UNSW’s Strategic Hires and Retention Pathways (SHARP) for support. We would also like to thank the editor for the invitation to submit to this Diamond Jubilee special issue.

  1. Research funding: This research was supported by the UNSW’s Strategic Hires and Retention Pathways (SHARP).

References

[1] A. D. McNaught, A. Wilkinson (Eds.), IUPAC. Compendium of Chemical Terminology (the “Gold Book”), IUPAC, Research Triangle Park, NC, 2nd ed. (1997).Search in Google Scholar

[2] T. Tidwell. Nat. Chem.5, 637 (2013).10.1038/nchem.1703Search in Google Scholar PubMed

[3] A. Downes, T. P. Blunt. Nature20, 521 (1879).10.1038/020521b0Search in Google Scholar

[4] P. H. Wine, J. M. Nicovich. Atmospheric Radical Chemistry, C. Chatgilialoglu, A. Studer (Eds.), In Encyclopedia of Radicals in Chemistry, Biology and Materials, pp. 1–26. John Wiley & Sons, Ltd. (2012).10.1002/9781119953678.rad015Search in Google Scholar

[5] P. Renaud, M. P. Sibi (Eds.), Radicals in Organic Synthesis, WILEY-VCH, Weinheim, Germany, (2001).10.1002/9783527618293Search in Google Scholar

[6] A. C. Fahrenbach, J. C. Barnes, D. A. Lanfranchi, H. Li, A. Coskun, J. J. Gassensmith, Z. Liu, D. Benítez, A. Trabolsi, W. A. GoddardIII, M. Elhabiri, J. F. Stoddart. J. Am. Chem. Soc.134, 3061 (2012).10.1021/ja2089603Search in Google Scholar PubMed

[7] Y. Wang, M. Frasconi, J. F. Stoddart. ACS Cent. Sci.3, 927 (2017).10.1021/acscentsci.7b00219Search in Google Scholar PubMed PubMed Central

[8] S. Di Meo, P. Venditti. Oxid. Med. Cell. Longev.2020, 9829176 (2020).Search in Google Scholar

[9] N. Kitadai, S. Maruyama. Geosci. Front.9, 1117 (2018).10.1016/j.gsf.2017.07.007Search in Google Scholar

[10] K. Ruiz-Mirazo, C. Briones, A. de la Escosura. Chem. Rev.114, 285 (2014).10.1021/cr2004844Search in Google Scholar PubMed

[11] J. D. Sutherland. Angew. Chem. Int. Ed.55, 104 (2016).10.1002/anie.201506585Search in Google Scholar PubMed

[12] E. Smith, H. J. Morowitz. The Origin and Nature of Life on Earth: The Emergence of the Fourth Geosphere, Cambridge University Press, Cambridge (2016).10.1017/CBO9781316348772Search in Google Scholar

[13] S. Islam, M. W. Powner. Chem2, 470 (2017).10.1016/j.chempr.2017.03.001Search in Google Scholar

[14] K. B. Muchowska, S. J. Varma, J. Moran. Chem. Rev.120, 7708 (2020).10.1021/acs.chemrev.0c00191Search in Google Scholar PubMed

[15] A. S. Burton, J. C. Stern, J. E. Elsila, D. P. Glavin, J. P. Dworkin. Chem. Soc. Rev.41, 5459 (2012).10.1039/c2cs35109aSearch in Google Scholar PubMed

[16] S. Kwok. Astron. Astrophys. Rev.24, 8 (2016).10.1007/s00159-016-0093-ySearch in Google Scholar

[17] C. R. Arumainayagam, R. T. Garrod, M. C. Boyer, A. K. Hay, S. T. Bao, J. S. Campbell, J. Wang, C. M. Nowak, M. R. Arumainayagam, P. J. Hodge. Chem. Soc. Rev.48, 2293 (2019).10.1039/C7CS00443ESearch in Google Scholar

[18] S. A. Sandford, M. Nuevo, P. P. Bera, T. J. Lee. Chem. Rev.120, 4616 (2020).10.1021/acs.chemrev.9b00560Search in Google Scholar PubMed

[19] C. Chyba, C. Sagan. Nature355, 125 (1992).10.1038/355125a0Search in Google Scholar PubMed

[20] Y. Furukawa, T. Sekine, M. Oba, T. Kakegawa, H. Nakazawa. Nat. Geosci.2, 62 (2009).10.1038/ngeo383Search in Google Scholar

[21] Y. Furukawa. Chikyukagaku (Geochemistry)50, 1 (2016).Search in Google Scholar

[22] Y. Takeuchi, Y. Furukawa, T. Kobayashi, T. Sekine, N. Terada, T. Kakegawa. Sci. Rep.10, 9220 (2020).10.1038/s41598-020-66112-8Search in Google Scholar PubMed PubMed Central

[23] G. Proskurowski, M. D. Lilley, J. S. Seewald, G. L. Früh-Green, E. J. Olson, J. E. Lupton, S. P. Sylva, D. S. Kelley. Science319, 604 (2008).10.1126/science.1151194Search in Google Scholar PubMed

[24] M. Colín-García, A. Heredia, G. Cordero, A. Camprubí, A. Negrón-Mendoza, F. Ortega-Gutiérrez, H. Beraldi, S. Ramos-Bernal. Boletín Soc. Geológica Mex.68, 599 (2016).10.18268/BSGM2016v68n3a13Search in Google Scholar

[25] M. Yadav, R. Kumar, R. Krishnamurthy. Chem. Rev.120, 4766 (2020).10.1021/acs.chemrev.9b00546Search in Google Scholar PubMed

[26] D. M. Fialho, T. P. Roche, N. V. Hud. Chem. Rev.120, 4806 (2020).10.1021/acs.chemrev.0c00069Search in Google Scholar PubMed

[27] H. J. CleavesII. Precambrian Res.164, 111 (2008).10.1016/j.precamres.2008.04.002Search in Google Scholar

[28] D. Ritson, J. D. Sutherland. Nat. Chem.4, 895 (2012).10.1038/nchem.1467Search in Google Scholar PubMed PubMed Central

[29] S. Lamour, S. Pallmann, M. Haas, O. Trapp. Life9, 52 (2019).10.3390/life9020052Search in Google Scholar PubMed PubMed Central

[30] S. A. Benner, H.-J. Kim, E. Biondi. Life9, 84 (2019).10.3390/life9040084Search in Google Scholar PubMed PubMed Central

[31] H. J. CleavesII. Nucleobases on the Primitive Earth: Their Sources and Stabilities, in Prebiotic Chemistry and Chemical Evolution of Nucleic Acids, C. Menor-Salván (Ed.), pp. 1–19. Vol. 35, Springer, Cham (2018).10.1007/978-3-319-93584-3_1Search in Google Scholar

[32] J. G. Forsythe, S. ‐S. Yu, I. Mamajanov, M. A. Grover, R. Krishnamurthy, F. M. Fernández, N. V Hud. Angew. Chem. Int. Ed.54, 9871 (2015).10.1002/anie.201503792Search in Google Scholar PubMed PubMed Central

[33] K. Chandru, N. Guttenberg, C. Giri, Y. Hongo, C. Butch, I. Mamajanov, H. J. CleavesII. Commun. Chem.1, 30 (2018).Search in Google Scholar

[34] A. Eschenmoser. Chem. Biodivers.4, 554 (2007).10.1002/cbdv.200790050Search in Google Scholar PubMed

[35] D. Y. Zubarev, D. Rappoport, A. Aspuru-Guzik. Sci. Rep.5, 8009 (2015).Search in Google Scholar

[36] G. Springsteen, J. R. Yerabolu, J. Nelson, C. J. Rhea, R. Krishnamurthy. Nat. Commun.9, 91 (2018).Search in Google Scholar

[37] K. B. Muchowska, S. J. Varma, J. Moran. Nature569, 104 (2019).10.1038/s41586-019-1151-1Search in Google Scholar PubMed PubMed Central

[38] L. Ramírez-Vázquez, E. Aguilar-Ovando, R. Acosta-Fernández, S. Ramos-Bernal, A. Negrón-Mendoza. J. Radioanal. Nucl. Chem.322, 1797 (2019).10.1007/s10967-019-06776-3Search in Google Scholar

[39] K. Plankensteiner, H. Reiner, B. M. Rode. Curr. Org. Chem.9, 1107 (2005).10.2174/1385272054553640Search in Google Scholar

[40] M. Frenkel-Pinter, M. Samanta, G. Ashkenasy, L. J. Leman. Chem. Rev.120, 4707 (2020).10.1021/acs.chemrev.9b00664Search in Google Scholar PubMed

[41] L. E. Orgel. PLoS Biol.6, e18 (2008).10.1371/journal.pbio.0060018Search in Google Scholar PubMed PubMed Central

[42] M. A. Keller, D. Kampjut, S. A. Harrison, M. Ralser. Nat. Ecol. Evol.1, 0083 (2017).Search in Google Scholar

[43] A. Studer, D. P. Curran. Angew. Chem. Int. Ed.55, 58 (2016).10.1002/anie.201505090Search in Google Scholar PubMed

[44] M. Gargaud, W. M. Irvine, R. Amils, H. J. CleavesII, D. L. Pinti, J. C. Quintanilla, D. Rouan, T. Spohn, S. Tirard, M. Viso (Eds.), Encyclopedia of Astrobiology, p. 481. Springer, Berlin, Heidelberg (2015).10.1007/978-3-662-44185-5Search in Google Scholar

[45] H. J. CleavesII. Evol. Educ. Outreach5, 342 (2012).10.1007/s12052-012-0443-9Search in Google Scholar

[46] S. L. Miller. Science117, 528 (1953).10.1126/science.117.3046.528Search in Google Scholar PubMed

[47] W. D. Harkins. Trans. Faraday Soc.30, 221 (1934).10.1039/tf9343000221Search in Google Scholar

[48] P. J. Dyne. Can. J. Phys.31, 453 (1953).10.1139/p53-042Search in Google Scholar

[49] E. T. Parker, J. H. Cleaves, A. S. Burton, D. P. Glavin, J. P. Dworkin, M. Zhou, J. L. Bada, F. M. Fernández. J. Vis. Exp.83, e51039 (2014).Search in Google Scholar

[50] H. J. Cleaves, J. H. Chalmers, A. Lazcano, S. L. Miller, J. L. Bada. Orig. Life Evol. Biosph.38, 105 (2008).10.1007/s11084-007-9120-3Search in Google Scholar PubMed

[51] K. Zahnle, L. Schaefer, B. Fegley. Cold Spring Harb. Perspect. Biol.2, a004895 (2010).Search in Google Scholar

[52] R. C. Payne, D. Brownlee, J. F. Kasting. Proc. Natl. Acad. Sci.117, 1360 (2020).10.1073/pnas.1910698117Search in Google Scholar PubMed PubMed Central

[53] A. P. Johnson, H. J. Cleaves, J. P. Dworkin, D. P. Glavin, A. Lazcano, J. L. Bada. Science322, 404 (2008).10.1126/science.1161527Search in Google Scholar PubMed

[54] D. Ring, S. L. Miller. Orig. Life Evol. Biosph.15, 7 (1984).10.1007/BF01809389Search in Google Scholar PubMed

[55] M. Ferus, P. Kubelík, A. Knížek, A. Pastorek, J. Sutherland, S. Civiš. Sci. Rep.7, 6275 (2017).Search in Google Scholar

[56] M. Ferus, D. Nesvorný, J. Šponer, P. Kubelík, R. Michalčíková, V. Shestivská, J. E. Šponer, S. Civiš. Proc. Natl. Acad. Sci.112, 657 (2015).10.1073/pnas.1412072111Search in Google Scholar PubMed PubMed Central

[57] C. Koeberl. Elements2, 211 (2006).10.2113/gselements.2.4.211Search in Google Scholar

[58] K. Kurosawa, S. Sugita, K. Ishibashi, S. Hasegawa, Y. Sekine, N. O. Ogawa, T. Kadono, S. Ohno, N. Ohkouchi, Y. Nagaoka, T. Matsui. Orig. Life Evol. Biosph.43, 221 (2013).10.1007/s11084-013-9339-0Search in Google Scholar PubMed

[59] P. P. Lavvas, A. Coustenis, I. M. Vardavas. Planet. Space Sci.56, 27 (2008).10.1016/j.pss.2007.05.026Search in Google Scholar

[60] C. C. Porco, E. Baker, J. Barbara, K. Beurle, A. Brahic, J. A. Burns, S. Charnoz, N. Cooper, D. D. Dawson, A. D. Del Genio, T. Denk, L. Dones, U. Dyudina, M. W. Evans, S. Fussner, B. Giese, K. Grazier, P. Helfenstein, A. P. Ingersoll, R. A. Jacobson, T. V. Johnson, A. McEwen, C. D. Murray, G. Neukum, W. M. Owen, J. Perry, T. Roatsch, J. Spitale, S. Squyres, P. Thomas, M. Tiscareno, E. P. Turtle, A. R. Vasavada, J. Veverka, R. Wagner, R. West. Nature434, 159 (2005).10.1038/nature03436Search in Google Scholar PubMed

[61] V. S. Airapetian, A. Glocer, G. Gronoff, E. Hébrard, W. Danchi. Nat. Geosci.9, 452 (2016).10.1038/ngeo2719Search in Google Scholar

[62] C. Sagan, C. Chyba. Science276, 1217 (1997).10.1126/science.276.5316.1217Search in Google Scholar

[63] F. J. Ciesla, S. A. Sandford. Science336, 452 (2012).10.1126/science.1217291Search in Google Scholar

[64] A. K. Eckhardt, A. Bergantini, S. K. Singh, P. R. Schreiner, R. I. Kaiser. Angew. Chem. Int. Ed.58, 5663 (2019).10.1002/anie.201901059Search in Google Scholar

[65] R. Saladino, B. M. Bizzarri, L. Botta, J. Šponer, J. E. Šponer, T. Georgelin, M. Jaber, B. Rigaud, M. Kapralov, G. N. Timoshenko, A. Rozanov, E. Krasavin, A. M. Timperio, E. Di Mauro. Sci. Rep.7, 14709 (2017).Search in Google Scholar

[66] R. A. Sanchez, L. E. Orgel. J. Mol. Biol.47, 531 (1970).10.1016/0022-2836(70)90320-7Search in Google Scholar

[67] B. H. Patel, C. Percivalle, D. J. Ritson, C. D. Duffy, J. D. Sutherland. Nat. Chem.7, 301 (2015).10.1038/nchem.2202Search in Google Scholar

[68] S. A. Benner, H.-J. Kim, E. Biondi. Mineral-Organic Interactions in Prebiotic Synthesis, in Prebiotic Chemistry and Chemical Evolution of Nucleic Acids, C. Menor-Salván (Ed.), Vol. 35, pp. 31–83, Springer, Cham (2018).10.1007/978-3-319-93584-3_3Search in Google Scholar

[69] S. Becker, J. Feldmann, S. Wiedemann, H. Okamura, C. Schneider, K. Iwan, A. Crisp, M. Rossa, T. Amatov, T. Carell. Science366, 76 (2019).10.1126/science.aax2747Search in Google Scholar

[70] C. D. Jonah. Radiat. Res.144, 141 (1995).10.2307/3579253Search in Google Scholar

[71] J. D. Zimbrick. Radiat. Res.158, 127 (2002).10.1667/0033-7587(2002)158[0127:RRSRCA]2.0.CO;2Search in Google Scholar

[72] R. Cooper. Aust. J. Chem.64, 864 (2011).10.1071/CH11142Search in Google Scholar

[73] E. J. Hart, J. W. Boag. J. Am. Chem. Soc.84, 4090 (1962).10.1021/ja00880a025Search in Google Scholar

[74] N. Getoff. In Vivo28, 61 (2014).Search in Google Scholar

[75] G. V. Buxton, C. L. Greenstock, W. P. Helman, A. B. Ross. J. Phys. Chem. Ref. Data17, 513 (1988).10.1063/1.555805Search in Google Scholar

[76] W. M. Garrison, D. C. Morrison, J. G. Hamilton, A. A. Benson, M. Calvin. Science114, 416 (1951).10.1126/science.114.2964.416Search in Google Scholar

[77] M. Calvin. Proc. R. Soc. London A288, 441 (1965).10.1098/rspa.1965.0233Search in Google Scholar

[78] M. Calvin. Chemical Evolution: Molecular Evolution Towards the Origin of Living Systems on the Earth and Elsewhere, Oxford University Press, London (1969).Search in Google Scholar

[79] R. M. Lemmon. Chem. Rev.70, 95 (1970).10.1021/cr60263a003Search in Google Scholar

[80] N. Getoff, G. O. Schenck. Radiat. Res.31, 486 (1967).10.2307/3572367Search in Google Scholar

[81] N. Getoff. Int. J. Hydrogen Energy19, 667 (1994).10.1016/0360-3199(94)90151-1Search in Google Scholar

[82] H. Ogura. Bull. Chem. Soc. Jpn.41, 2871 (1968).10.1246/bcsj.41.2871Search in Google Scholar

[83] I. Draganić, Z. Draganić, L. Petković, A. Nikolić. J. Am. Chem. Soc.95, 7193 (1973).10.1021/ja00803a001Search in Google Scholar

[84] D. Behar. J. Phys. Chem.78, 2660 (1974).10.1021/j100619a005Search in Google Scholar

[85] H. Büchler, R. E. Bühler, R. Cooper. J. Phys. Chem.80, 1549 (1976).10.1021/j100555a006Search in Google Scholar

[86] D. Behar, R. W. Fessenden. J. Phys. Chem.76, 3945 (1972).10.1021/j100670a009Search in Google Scholar

[87] H. J. McManus, R. W. Fessenden, D. M. Chipman. J. Phys. Chem.92, 3781 (1988).10.1021/j100324a019Search in Google Scholar

[88] H. Ogura. J. Radiat. Res.8, 93 (1967).10.1269/jrr.8.93Search in Google Scholar PubMed

[89] H. Ogura, T. Fujimura, S. Murozono, K. Hirano, M. Kondo. J. Nucl. Sci. Technol.9, 339 (1972).10.1080/18811248.1972.9734854Search in Google Scholar

[90] B. H. J. Bielski, A. O. Allen. J. Am. Chem. Soc.99, 5931 (1977).10.1021/ja00460a015Search in Google Scholar

[91] Z. D. Draganić, I. G. Draganić, V. Niketić. Radiat. Res.69, 223 (1977).10.2307/3574430Search in Google Scholar

[92] Q. Shen-chu, Y. Shao-hua, W. Ji-lan. Radiat. Phys. Chem.18, 793 (1981).Search in Google Scholar

[93] V. Niketić, Z. D. Draganić, S. Nešković, S. Jovanović, I. G. Draganić. J. Mol. Evol.19, 184 (1983).10.1007/BF02300757Search in Google Scholar

[94] Z. D. Draganić, I. G. Draganić, J. A. Azamar, S. I. Vujošević, M. D. Berber, A. Negrón-Mendoza. J. Mol. Evol.21, 356 (1985).10.1007/BF02115655Search in Google Scholar

[95] G. Marston, L. J. Stief. Res. Chem. Intermed.12, 161 (1989).10.1163/156856789X00113Search in Google Scholar

[96] I. G. Draganić, Z. D. Draganić. Radiat. Phys. Chem.15, 195 (1980).Search in Google Scholar

[97] I. G. Draganić. Radiat. Phys. Chem.72, 181 (2005).10.1016/j.radphyschem.2004.09.012Search in Google Scholar

[98] T. Ebisuzaki, S. Maruyama. Geosci. Front.8, 275 (2017).10.1016/j.gsf.2016.09.005Search in Google Scholar

[99] S. Ranjan, D. D. Sasselov. Astrobiology16, 68 (2016).10.1089/ast.2015.1359Search in Google Scholar PubMed

[100] M. W. Powner, B. Gerland, J. D. Sutherland. Nature459, 239 (2009).10.1038/nature08013Search in Google Scholar PubMed

[101] Z. R. Todd, A. C. Fahrenbach, C. J. Magnani, S. Ranjan, A. Björkbom, J. W. Szostak, D. D. Sasselov. Chem. Commun.54, 1121 (2018).10.1039/C7CC07748CSearch in Google Scholar

[102] R. Yi, Q. P. Tran, S. Ali, I. Yoda, Z. R. Adam, H. J. CleavesII, A. C. Fahrenbach. Proc. Natl. Acad. Sci.117, 13267 (2020).10.1073/pnas.1922139117Search in Google Scholar PubMed PubMed Central

[103] R. Yi, Y. Hongo, I. Yoda, Z. R. Adam, A. C. Fahrenbach. ChemistrySelect3, 10169 (2018).10.1002/slct.201802242Search in Google Scholar

[104] A. C. Fahrenbach, C. Giurgiu, C. P. Tam, L. Li, Y. Hongo, M. Aono, J. W. Szostak. J. Am. Chem. Soc.139, 8780 (2017).10.1021/jacs.7b01562Search in Google Scholar PubMed PubMed Central

[105] S. A. Benner. Orig. Life Evol. Biosph.44, 339 (2014).10.1007/s11084-014-9379-0Search in Google Scholar PubMed

[106] R. Saladino, G. Botta, S. Pino, G. Costanzo, E. Di Mauro. Chem. Soc. Rev.41, 5526 (2012).10.1039/c2cs35066aSearch in Google Scholar PubMed

[107] Z. R. Adam, Y. Hongo, H. J. CleavesII, R. Yi, A. C. Fahrenbach, I. Yoda, M. Aono. Sci. Rep.8, 265 (2018).Search in Google Scholar

[108] J. Xu, M. Tsanakopoulou, C. J. Magnani, R. Szabla, J. E. Šponer, J. Šponer, R. W. Góra, J. D. Sutherland. Nat. Chem.9, 303 (2017).10.1038/nchem.2664Search in Google Scholar PubMed PubMed Central

[109] J. Xu, V. Chmela, N. J. Green, D. A. Russell, M. J. Janicki, R. W. Góra, R. Szabla, A. D. Bond, J. D. Sutherland. Nature582, 60 (2020).10.1038/s41586-020-2330-9Search in Google Scholar PubMed PubMed Central

[110] M. A. Pasek, M. Gull, B. Herschy. Chem. Geol.475, 149 (2017).10.1016/j.chemgeo.2017.11.008Search in Google Scholar

[111] M. A. Pasek, J. P. Dworkin, D. S. Lauretta. Geochim. Cosmochim. Acta71, 1721 (2007).10.1016/j.gca.2006.12.018Search in Google Scholar

[112] J. Rétey. Angew. Chem. Int. Ed.29, 355 (1990).10.1002/anie.199003551Search in Google Scholar

[113] M. C. Weiss, F. L. Sousa, N. Mrnjavac, S. Neukirchen, M. Roettger, S. Nelson-Sathi, W. F. Martin. Nat. Microbiol.1, 16116 (2016).10.1038/nmicrobiol.2016.116Search in Google Scholar PubMed

[114] J. B. Broderick, B. R. Duffus, K. S. Duschene, E. M. Shepard. Chem. Rev.114, 4229 (2014).10.1021/cr4004709Search in Google Scholar PubMed PubMed Central

[115] W. Buckel, B. T. Golding. Annu. Rev. Microbiol.60, 27 (2006).10.1146/annurev.micro.60.080805.142216Search in Google Scholar PubMed

[116] P. Gabani, O. V. Singh. Appl. Microbiol. Biotechnol.97, 993 (2013).10.1007/s00253-012-4642-7Search in Google Scholar PubMed

[117] D. Chivian, E. L. Brodie, E. J. Alm, D. E. Culley, P. S. Dehal, T. Z. DeSantis, T. M. Gihring, A. Lapidus, L.-H. Lin, S. R. Lowry, D. P. Moser, P. M. Richardson, G. Southam, G. Wanger, L. M. Pratt, G. L. Andersen, T. C. Hazen, F. J. Brockman, A. P. Arkin, T. C. Onstott. Science322, 275 (2008).10.1126/science.1155495Search in Google Scholar PubMed

Published Online: 2020-10-14
Published in Print: 2020-12-16

© 2020 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/pac-2020-0805/html
Scroll to top button